Return to search

Techno-economical modeling of a PtG plant for operational optimization in the context of gas grid injection in France / Teknisk-ekonomisk modellering av en PtG-anläggningför att optimera dess användning i gasnät i Frankrike

Klimatförändringar är den enskilt största utmaningen som mänskligheten står inför under 2000-talet. För att ta itu med denna utmaning förutses förnybara energikällor en stor ökning av andelen primärenergi globalt. Den naturliga variabiliteten hos sol och vind kräver att energilagring används tillsammans med dem för en energisystemövergång. Power-to-Gas (PtG) -teknologier erbjuder en attraktiv lösning genom att möjliggöra omvandling av elektrisk energi till vätgas eller metan, vilket möjliggör integration över nätverk och sektorövergripande integration. Denna avhandling undersöker lönsamheten för en PtG-anläggning med enprimär applikation för att producera syntetisk metan (SNG) för injektion av naturgas(NG). En teknik-ekonomisk modell skapades för att simulera anläggningens drift under ett år och extrapolera resultaten för projektets livslängd. Modellen designades baserat på ett pilotprojekt som utvecklades i Frankrike med namnet HYCAUNAIS och har använt partner-samt litteraturdata för bearbetning. På grund av begränsningar i den lokala NG-nätkapaciteten undersöktes era scenarier som inkluderade att lägga till ytterligare investeringar som möjliggör ökad driftstid och intäktsströmmar, inklusive: fast elpris eller day-ahead (DA) marknadsdeltagande; nätuppgradering för ökad NG-nätkapacitet; och CH4 och H2 mobilitet. Elektrolysörers deltagande i frekvensbegränsningsreserven (FCR) ansågs också förökad lönsamhet. Resultaten visade att standardfallsscenariot (inga ytterligare investeringar) med deltagande på DA-elmarknaden var det mest attraktiva när det gäller tre undersökta mål: nettonuvärde (NPV), återbetalningsperiod (PBP) och nivåniserad metankostnad (LCOM). Driftstiden för standardfallet befanns vara cirka 90% av året; produktionen hindrades inte av begränsad nätkapacitet tillräckligt för att anse ytterligare investeringar nödvändiga. Vidare bör deltagande på DA-marknaden bestämmas av en upphörd betalningsvilja (WTP) för el i motsats till marginell vinst (MP). Att använda WTP som avgörande faktor tillät ökade driftstimmar och lägre LCOM. Men i alla undersökta scenarier var inga lönsamma; vilket innebär att marknadsförhållandena fortfarande måste förbättras kraftigt innan PtG kan få fart. En känslighetsanalys gjordes på standardfallsscenariot för att se vilka parametrar som påverkar lönsamheten mest och bör vara i fokus för vidare forskning och utveckling. SNG-taxan visade sig vara den mest inytelserika på NPV, vilket krävde att en tariff på minst 188 e=MWh (120 e=MWh användes för modellering) för att vara lönsam. Elpriset var det näst mest inytelserika och krävde ett genomsnittligt marknadspris på 25 e=MWh för att vara lönsamt. Eftersom PtG-teknik kan ge era externa fördelar som inte realiseras ekonomiskt av investerare, kan intäktsgenerering av dem ge ett sätt att förbättra lönsamheten. Detta inkluderar nätbalansering och exibilitet, avkolning, lägre nätkostnader ochförbättrad energisäkerhet. Sammanfattningsvis måste kapitalkostnaderna för utrustning,elpriser och avgifter i samband med dessa samt taxor för gröna gaser förbättras dramatiskt för att SNG-produktionen ska vara en attraktiv lösning för minskning och avkolning av el. / Climate change is the single largest challenge facing humanity in the 21st century. To tackle this challenge, renewable energies are seeing a large increase in primary energy share globally. The natural variableness of solar and wind requires energy storage to be used in conjuction with them for an energy system transition. Power-to-Gas (PtG) technologies offer an attractive solution by allowing conversion of electrical energy to hydrogen or methane, enabling cross-energy-network and cross-sectoral integration. This thesis investigates profitability of a PtG plant with a primary application of producing synthetic methane (SNG) for natural gas (NG) grid injection. A techno-economical model was created to simulate plant operation over one year and extrapolate the results for the project lifespan. The model was designed based off of a pilot project being developed in France named HYCAUNAIS and used partner as well as literature data for processing. Due to limitations inlocal NG grid capacity, several scenarios were investigated that included adding additional investments that allow increased operational time and revenue streams, including: fixed electrical price or day-ahead (DA) market participation; mesh upgrade for increased NG grid capacity; and CH4 and H2 mobility. Electrolyser participation in the frequency containment reserve (FCR) was also considered for increased profitability. The results determined the standard case scenario (no additional investments) with participation in the DA electricity market was the most attractive in terms of three objectives investigated: net present value (NPV), payback period (PBP) and levelized cost of methane (LCOM). The operational hours of the standard case was found to be approximately 90% of the year; production was not hindered by limited grid capacity sufficiently to deem additional investments necessary. Further, participation in the DA market should be determined by a cut-off willingness to pay (WTP) for electricity as opposed to marginal profit (MP). Using WTP as the determining factor allowed increased operational hours and lower LCOM. However, in all of the scenarios investigated, none were profitable; meaning that market conditions still need to greatly improve before PtG can gain momentum. A sensitivity analysis was done on the standard case scenario to see which parameters influence profitability the most and should be the focus of further research and development. The SNG tariff was found to be the most influential on NPV, requiring a tariff of at least 188 e=MWh (120 e=MWh was used for modeling) to be profitable. Electricity price was the second most inuential and required an average market price of 25 e=MWh to be profitable. As PtG technologies can provide several external benefits that are not economically realized by investors, monetization of them could provide a means of improving profitability. This includes, grid balancing and exibility, decarbonization, lower grid costs and improved energy security. Inconclusion, capital costs of equipment, electricity prices and fees associated to them, and tariffs for green gases all need to improve dramatically for SNG production tobe an attractive solution for electricity curtailment and decarbonization.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-288978
Date January 2020
CreatorsDuncan, Corey Scott
PublisherKTH, Kemiteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2020:278

Page generated in 0.0025 seconds