Le phénomène d'injection de charges dans des isolants synthétiques et la distorsion du champ électrique qui en découlent représentent un frein au développement des câbles pour le transport d'énergie électrique sous haute tension continue (HVDC). Les solutions au problème sont le plus souvent recherchées en influant sur la formulation des matériaux, en l'occurrence le polyéthylène. La voie explorée dans cette thèse est une alternative consistant à créer une barrière permettant le contrôle de l'injection de charges dans un film de polyéthylène basse densité (LDPE) sous contrainte électrique. La solution proposée et étudiée consiste à modifier la surface du film polymère en y insérant des nanoparticules métalliques, susceptibles de jouer le rôle de pièges profonds et d'écranter le champ électrique, contrôlant ainsi l'injection. Pour cela, des nanoparticules d'argent (NPs d'Ag) sont déposées et recouvertes d'une matrice semi-isolante organosiliciée de type SiOxCy:H. La couche mince nanocomposite est élaborée par procédé plasma. Son épaisseur totale est d'environ 50 nm. Les nanoparticules sont obtenues par pulvérisation cathodique et la matrice environnante est réalisée avec un dépôt chimique en phase vapeur assisté par plasma. Le procédé d'élaboration est mis en œuvre dans le même réacteur en utilisant une décharge asymétrique RF à couplage capacitif entretenue à 13.56 MHz à basse pression du gaz. Une étude de l'influence des conditions opératoires du plasma sur les caractéristiques des NPs d'Ag et sur la matrice environnante a été réalisée. Les caractéristiques définies des NPs d'Ag sont la densité, la taille moyenne et la dispersion des nanoparticules. Les analyses physico-chimiques et structurales de la couche nanocomposite ont permis de valider la maîtrise de la formation des nanoparticules et de ses propriétés. L'évaluation de l'efficacité du dépôt a permis de définir les caractéristiques essentielles pour un contrôle des phénomènes d'injection de charges. Les analyses du comportement de l'ensemble étudié sous contrainte électrique ont été obtenues par des mesures de distribution de charges d'espace par méthode électroacoustique, de courant et de potentiel de surface. Les résultats montrent que la modification de la surface d'un film polymère par une couche mince nanocomposite contenant des NPs d'Ag enterrées à une profondeur contrôlée de la surface de la matrice organosiliciée permet le contrôle parfait de l'injection de charge dans un film de LPDE sous des niveaux de champ électrique usuels pour les applications HVDC. L'impact des caractéristiques de la couche nanocomposite sur l'efficacité du procédé a été évalué. Cette étude prouve le concept et ouvre la voie de la maîtrise des interfaces pour le contrôle de l'injection de charges dans des isolants polymères. / Charge injection phenomenon in electrically insulating polymers and the resultant electric field distortion remain obstacles to the development of cables for electrical energy transport under high voltage direct current (HVDC). Routes to solve the problem are most often looked for by acting on the material formulation, polyethylene in the present case. As alternative route, we explore in this thesis the possibility to develop a barrier layer allowing fine control of the charge injection in low density polyethylene (LDPE) films. The proposed and further studied solution is to tailor the surface of the polymer film by introducing metallic nanoparticles that would act as deep traps and would produce field screening, thus controlling charge injection. To achieve this, silver nanoparticles (AgNPs) are deposited on the LDPE and covered by a thin organosilicon layers of the type SiOxCy:H. The nanocomposite layer with total thickness of about 50 nm is elaborated in a plasma process. The AgNPs are obtained by sputtering of a silver target and the organosilicon matrix is then deposited in a plasma enhanced chemical vapor deposition (PECVD). The deposition process is realized in the same reactor in the plasma of an asymmetric RF capacitively coupled discharge maintained at 13.56 MHz at low gas pressure. The obtained characteristics for the AgNPs are for their mean size, density and dispersion. The physico-chemical and structural analyses of the nanocomposite layer allowed identifying the plasma operating conditions to control the AgNPs properties. From the evaluation of the efficiency of the AgNPs/organosilicon stack against charge injection, a detailed description of the required properties of the nanocomposite layer for the control of the charge injection phenomenon was derived. The behaviour of the studied structure, nanocomposite layer deposited on the surface of LDPE film, under electrical stress was studied by space charge measurement through the Pulsed Electro-Acoustic (PEA) method, current and surface potential decay measurements. The obtained results show that tailoring the surface of polyethylene film by very thin nanocomposite layer containing AgNPs embedded at a controlled distance from the free surface of the organosilicon matrix permits suppression of charges injection in LDPE films. The impact of nanocomposite layer structure on the efficiency of the barrier effect was evaluated. The mitigation effect is observed up to the typical service electric field for HVDC applications. This study presents a proof-of-concept and opens the way for interface tailoring to control the charge injection in electrically insulating polymers.
Identifer | oai:union.ndltd.org:theses.fr/2015TOU30317 |
Date | 15 December 2015 |
Creators | Millière, Laurent |
Contributors | Toulouse 3, Teyssedre, Gilbert, Makasheva, Kremena |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds