Elektronik för extrema miljöer, som kan användas vid hög temperatur, hög strålning och omgivning med frätande gaser, har varit starkt önskvärd vid utforskning av rymden och övervakning av kärnreaktorer. Kiselkarbid (SiC) är en av kandidaterna inom material för extrema miljöer på grund av sin höga temperatur- och höga strålnings-tolerans. Syftet med denna avhandling är att karakterisera 4H-SiC MOSFETar vid hög temperatur och att konstruera SPICE modeller för 4H-SiC MOSFETar. MOSFET-transistorer karakteriserades till 500°C. Med användande av karaktäristik för en 4H-SiC NMOSFET med L/W = 10 µm / 50 µm, anpassades en SPICE LEVEL 2 kretsmodell. Modellen beskriver DC karakteristiska av 4H- SiC MOSFETar mellan 25ºC och 450ºC. Baserat på SPICE-kretsmodellen simulerades egenskaper för operationsförstärkare och digitala inverterar. Därutöver analyserades driften av pseudo-CMOS vid hög temperatur och principen för konstruktion av pseudo-CMOS föreslogs. Arean och utbytet (s.k. yield) av pseudo-CMOS integrerade kretsar uppskattades och det visar sig att SiC pseudo-CMOS integrerade kretsar kan använda mindre area än SiC CMOS integrerade kretsar. / Harsh environment electronics, which can be operated at high-temperature, high-radiation, and corrosive gas environment, has been strongly desired in space exploration and monitoring of nuclear reactors. Silicon Carbide (SiC) is one of the candidates of materials for harsh environment electronics because of its high-temperature and high-radiation tolerance. The objective of this thesis is to characterize 4H-SiC MOSFETs at high- temperature and to construct SPICE models of the 4H-SiC MOSFETs. The MOSFET devices were characterized up to 500ºC. Using the characteristic of a 4H-SiC NMOSFET with L/W = 10 µm/50 µm, a SPICE LEVEL 2 circuit model was constructed. This model describes the DC characteristic of the 4H-SiC MOSFETs in the range of 25 – 450ºC. Based on the SPICE circuit model, the characteristics of operational amplifiers and digital inverters were simulated. Furthermore, the operation of pseudo-CMOS at high-temperature was analyzed and the operation principle of pseudo-CMOS was suggested. The device area and yield of pseudo-CMOS integrated circuits were estimated and it is shown that SiC pseudo-CMOS integrated circuits can use less area than SiC CMOS integrated circuits.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-223422 |
Date | January 2017 |
Creators | Kimoto, Daiki |
Publisher | KTH, Skolan för informations- och kommunikationsteknik (ICT) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ICT-EX ; 2017:10 |
Page generated in 0.0029 seconds