Return to search

EEG Interictal Spike Detection Using Artificial Neural Networks

Epilepsy is a neurological disease causing seizures in its victims and affects approximately 50 million people worldwide. Successful treatment is dependent upon correct identification of the origin of the seizures within the brain. To achieve this, electroencephalograms (EEGs) are used to measure a patient’s brainwaves. This EEG data must be manually analyzed to identify interictal spikes that emanate from the afflicted region of the brain. This process can take a neurologist more than a week and a half per patient. This thesis presents a method to extract and process the interictal spikes in a patient, and use them to reduce the amount of data for a neurologist to manually analyze. The effectiveness of multiple neural network implementations is compared, and a data reduction of 3-4 orders of magnitude, or upwards of 99%, is achieved.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-5727
Date01 January 2016
CreatorsCarey, Howard J, III
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0016 seconds