Return to search

Detection of biomarkers for lung cancer and leukemia using SPR nanohole-based sensors

Cancer is a leading cause of death and some types of cancer are hard to diagnose at early stages. An accurate method for subtype classification of cancer types is also critical for patients to receive effective treatments. Many cancer biomarkers (e.g., EGFR for lung cancers and CD19/CD20 for leukemia) have been found with potential of being used for cancer diagnosis and subtype cancer classification. A biosensing technique being able to detect biomarkers with a miniaturized system, based on extraordinary light transmission (EOT) through nanohole arrays on metal films, is promising for cancer diagnosis and subtype classifications. In this research, the detection of different biomarkers (EGFR, CD19 and CD20) was demonstrated using a surface plasmon resonance (SPR) setup with EOT. The concentration of EGFR from cell lysate solution was determined using the SPR setup and compared with a current analytical method (ELISA). The SPR setup gave a detection limit concentration of 0.77 g/mL for the EGFR. The EGFR concentration from the cell lysate was determined to be greater than 10 g/mL from SPR experiments; while a lower concentration of 0.604 g/mL was found from ELISA indicating some problems with the calibration curves obtained in the SPR experiments. A whole lung cancer cell capture experiment was also conducted using microscopy imaging and the SPR setup. A number of 11 2 cells/mm2 was captured from a pre-modified metal surface, which was confirmed by SPR. / Graduate / 0752 / 0541

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVIV.1828/4661
Date25 June 2013
CreatorsYu, Ting
ContributorsBrolo, Alexandre Guimaraes
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web

Page generated in 0.0023 seconds