The focus of the project is to validate the fluid model with different flooring materials and the measurements of an instrument to test flooring materials and its force attenuating capabilities using mathematical models to describe the signature and coefficients of the floor.As a part of improving the knowledge about the linear dynamics of vibrations involved during the sudden impact caused on hip bones of elderly people during fall. The project initiated in January 2017 and end date was set to May 2017.The main contribution of the present work focuses on the development of a mathematical fluid model for floors. The aim of the thesis was to analyze, compare different floor materials and to study the linear dynamics of falling impacts on floors. The impact of the hammer during a fall is captured by an accelerometer and response is collected using a picoscope. The collected data was analyzed using matlab least square method which is coded as per the fluid model.The finding from this thesis showed that the fluid model works with a more elastic model but it doesn't work for rigid materials like wood. The importance of parameters like velocity, mass, energy loss and other coefficients of a floor which influences the model during the impact of falling on floors were identified and a standardized testing method was set.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-34068 |
Date | January 2017 |
Creators | Philip, Rony |
Publisher | Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, Amrita University, India |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds