This work presents a combined theoretical-experimental study of strain rate behavior in metals. The method is to experimentally calibrate and validate an Internal State Variable (ISV) constitutive model with a wide range of strain rate sensitivity. Therefore a practical apparatus and methodology for performing highly sought-after intermediate strain rate experimentation was created. For the first time in reported literature, the structure-property relations of Rolled Homogeneous Armor is quantified at the microscale and modeled with varying strain rates, temperatures, and stress states to capture plasticity and damage with a single set of constants that includes intermediate strain rates. A rolled homogeneous armor (RHA) was used as a material system to prove the methodology. In doing so, a newly implemented strain rate dependent nucleation parameter for RHA was implemented to transition the dominant damage mechanism from void growth to void nucleation as strain rate increased. The ISVs were utilized in finite element analysis for robust predictability of mechanical performance as well as predictability of microstructural evolution with regards to void size and number distribution. For intermediate strain rate experiments, robust load acquisition was achieved using a novel serpentine transmittal bar that allowed for long stress waves to traverse a short bar system; this system eliminated load- ringing that plagues servo-hydraulic systems. A direct hydraulic loading apparatus was developed to provide uniform strain rates throughout intermediate rate tests to improve on the current limitations of the state-of-the-art. Key recommendations on the advancement of predictive modeling of dynamic materials, as well as performing advanced dynamic experimentation, are elucidated.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2462 |
Date | 11 December 2015 |
Creators | Whittington, Wilburn Ray |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds