• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Experimental Method for Testing Materials at the Intermediate Strain Rate with Closed Loop Control

Krivanec, Cory N 14 December 2018 (has links)
Quasi static and intermediate strain rate (5 s-1 and 500 s-1) tests are conducted on various aluminum and steel ASTM E8 subsize tensile specimens to validate a newly developed testing method which combines a previously developed serpentine bar for load monitoring and a newly described high-speed actuator. This new actuator is controlled by a semi-passive piezoelectrically actuated brake system mounted to a standard actuator, which allows for the actuator to produce high loads and quick response times (≈100 µs). Limitations of this experimental method are that tests must be monotonic (tension or compression but not cyclic loading) and strain rate rise times limit this method to the intermediate strain rate regime (below 500 s-1).
2

Development of Intermediate and High Strain Rate Experimentation and Material Modeling of Viscoplastic Metals

Whittington, Wilburn Ray 11 December 2015 (has links)
This work presents a combined theoretical-experimental study of strain rate behavior in metals. The method is to experimentally calibrate and validate an Internal State Variable (ISV) constitutive model with a wide range of strain rate sensitivity. Therefore a practical apparatus and methodology for performing highly sought-after intermediate strain rate experimentation was created. For the first time in reported literature, the structure-property relations of Rolled Homogeneous Armor is quantified at the microscale and modeled with varying strain rates, temperatures, and stress states to capture plasticity and damage with a single set of constants that includes intermediate strain rates. A rolled homogeneous armor (RHA) was used as a material system to prove the methodology. In doing so, a newly implemented strain rate dependent nucleation parameter for RHA was implemented to transition the dominant damage mechanism from void growth to void nucleation as strain rate increased. The ISVs were utilized in finite element analysis for robust predictability of mechanical performance as well as predictability of microstructural evolution with regards to void size and number distribution. For intermediate strain rate experiments, robust load acquisition was achieved using a novel serpentine transmittal bar that allowed for long stress waves to traverse a short bar system; this system eliminated load- ringing that plagues servo-hydraulic systems. A direct hydraulic loading apparatus was developed to provide uniform strain rates throughout intermediate rate tests to improve on the current limitations of the state-of-the-art. Key recommendations on the advancement of predictive modeling of dynamic materials, as well as performing advanced dynamic experimentation, are elucidated.
3

A Non-linear Visco-elastic Model for Dynamic Finite Element Simulation of Bovine Cortical Bone

Blignaut, Caitlyn 07 July 2021 (has links)
Modelling and simulation of the human body during an impact situation such as a car accident, can lead to better designed safety features on vehicles. In order to achieve this, investigation into the material properties and the creation of a numerical model of cortical bone is needed. One approach to creating a material model of cortical bone suitable for these situations is to describe the material model as visco-elastic, as reported by Shim et al. [1], Bekker et al. [2] and Cloete et al. [3]. The work by Shim et al. and Bekker et al. developed three-dimensional models, but do not accurately capture the transition in behaviour in the intermediate strain rate region, while Cloete et al. developed a phenomenological model which captures the intermediate strain rate behaviour in one dimension. This work aims to verify and extend these models. The intermediate strain rate regime (1 s−1 to 100 s−1 ) is of particular interest because it is a key characteristic of the behaviour of cortical bone and several studies have been conducted to gather experimental data in this region [3, 4, 5, 6]. The behaviour can be captured using non-linear viscoelastic models. This dissertation focuses on the development and implementation of a material model of cortical bone based on non-linear visco-elastic models to capture the intermediate strain rate regime behaviour. The material model was developed using uni-axial test results from cortical bone. The model by Cloete et al. has been improved and extended, and issues of local and global strain rate with regards to the viscosity have been clarified. A hereditary integral approach was taken in the analysis and implementation of discrete models and was found to be consistent with mathematical models. The model developed was extended to three dimensions in a manner similar to that of Shim et al. and Bekker et al. for implementation in commercial finite element software (LS-Dyna and Abaqus).
4

Experimental Techniques for Shear Testing of Thin Sheet Metals and Compression Testing at Intermediate Strain Rates

Gardner, Kevin Alexander 24 July 2013 (has links)
No description available.
5

Compact Stress Waveguides in Solid Mechanics

Leonard, Richard Young, III 30 April 2021 (has links)
This work analyzes the design and implementation of waveguides used to measure stress waves in solid mechanics via explicit finite element analysis and experimentation. Many areas of physics use waveguides where control of timing, location, or frequency of waves is imperative to functionality of a system. Split Hopkinson pressure bars (Kolsky bars) traditionally utilize straight waveguides during testing. Prior research produced the first bent wave guide for use in such an application, the coaxially embedded serpentine bar (CESB). Explicit finite element analysis (FEA) provides a modeling approach to understand the effects of pass and joint geometry and boundary conditions on the functionality of solid-mechanic waveguides like the CESB. FEA and experimentation also contrasts the functionality of welded joints and threaded joints. Novel waveguide designs that do not feature tubes are also detailed for use in dynamic mechanical testing and dynamic hardness indentation experiments. These designs feature acoustic lengths up to two orders of magnitude greater than their physical lengths.
6

Intermediate Strain Rate Behavior of Two Structural Energetic Materials

Patel, Nitin R. 08 December 2004 (has links)
A new class of materials, known as multi-functional energetic structural materials (MESMs), has been developed. These materials possess both strength and energetic functionalities, serving as candidates for many exciting applications. One of such applications is ballistic missiles, where these materials serve as part of structural casing as well as explosive payload. In this study, the dynamic compressive behavior of two types of MESMs in the intermediate strain rate regime is investigated. The first type is a thermite mixture of Al and Fe₂O₃ particles suspended in an epoxy matrix. The second type is a shock compacted mixture of Ni and Al powders. Compression experiments on a split-Hopkinson pressure bar (SHPB) apparatus are carried out at strain rates on the order of 103 s-1. In addition, a novel method for investigating the dynamic hardness of the Al + Fe₂O₃ + Epoxy materials is developed. In this method, high-speed digital photography is used to obtain time-resolved measurements of the indentation diameter throughout the indentation process. Experiments show that the shock compacted Ni-Al material exhibits a rather ductile behavior and the deformation of the Al + Fe₂O₃ + Epoxy mixtures is dominated by the polymer phase and significantly modulated by the powder phases. The pure epoxy is ductile with elastic-plastic hardening, softening, and perfectly plastic stages of deformation. The Al and Fe₂O₃ particles in Al + Fe₂O₃ + Epoxy mixtures act as reinforcements for the polymer matrix, impeding the deformation of the polymer chains, alleviating the strain softening of the glassy polymer matrix at lower levels of powder contents (21.6 - 29.2% by volume), and imparting the attributes of strain hardening to the mixtures at higher levels of powder contents (21.6 - 49.1% by volume). Both the dynamic and quasi-static hardness values of the Al + Fe₂O₃ + Epoxy mixtures increase with powder content, consistent with the trend seen in the stress-strain curves. To quantify the constitutive behavior of the 100% epoxy and the Al + Fe₂O₃ + Epoxy materials, the experimentally obtained stress-strain curves are fitted to the Hasan-Boyce model. This model uses a distribution of activation energies to characterize the energy barrier for the initiation of localized shear transformations of long chain polymeric molecules. The results show that an increase in powder content increases the activation energy, decreases the number of transformation sites, causes redistribution of applied strain energy, and enhances the storage of inelastic work. These effects lead to enhanced strength and strain hardening rate at higher levels of powder content.

Page generated in 0.0947 seconds