"A combined hardware and software platform for ambulatory seizure onset detection is presented. The hardware is developed around commercial off-the-shelf components, featuring ADS1299 analog front ends for electroencephalography from Texas Instruments and a Broadcom ARM11 microcontroller for algorithm execution. The onset detection algorithm is a patient-specific support vector machine algorithm. It outperforms a state-of-the-art detector on a reference data set, with 100% sensitivity, 3.4 second average onset detection latency, and on average 1 false positive per 24 hours. The more comprehensive European Epilepsy Database is then evaluated, which highlights several real-world challenges for seizure onset detection, resulting in reduced average sensitivity of 93.5%, 5 second average onset detection latency, and 85.5% specificity. Algorithm enhancements to improve this reduced performance are proposed."
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-2034 |
Date | 12 September 2013 |
Creators | Kindle, Alexander Lawrence |
Contributors | Taskin Padir, Advisor, Bryan McLaughlin, Advisor, Michael A. Gennert, Committee Member |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0025 seconds