This dissertation presents the research on several different projects. The first project is a via-less CPW RF probe pad to microstrip transition; The second, the third, and the fourth one are reconfigurable microwave circuits using RF MEMS switches: an X-band reconfigurable bandstop filter for wireless RF frontends, an X-band reconfigurable impedance tuner for a class-E high efficiency power amplifier using RF MEMS switches, and a reconfigurable self-similar antenna using RF MEMS switches. The first project was developed in order to facilitate the on-wafer measurement for the second and the third project, since both of them are microstrip transmission line based microwave circuits. A thorough study of the via-less CPW RF probe pad to microstrip transition on silicon substrates was performed and general design rules are derived to provide design guidelines. This research work is then expanded to W-band via-less transition up to 110 GHz. The second project is to develop a low power reconfigurable monolithic bandstop filter operating at 8, 10, 13, and 15 GHz with cantilever beam capacitive MEMS switches. The filter contains microstrip lines and radial stubs that provide different reactances at different frequencies. By electrically actuating different MEMS switches, the different
reactances from different radial stubs connecting to these switches will be selected, thus, the filter will resonate at different frequencies. The third project is to develop a monolithic reconfigurable impedance tuner at 10 GHz with the cantilever DC contact MEMS switch. The impedance tuner is a two port network based on a 3bit-3bit digital design, and uses 6 radial shunt stubs that can be selected via integrated DC contact MEMS switches. By selecting different states of the switches, there will be a total of 2^6 = 64 states, which means 64 different impedances will be generated at the output port of the tuner. This will provide a sufficient tuning range for the output port of the power amplifier to maximize the power efficiency. The last project is to integrate the DC contact RF MEMS switches with self-similar planar antennas, to provide a reconfigurable antenna system that radiates with similar patterns over a wide range of frequencies.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/11656 |
Date | 31 May 2005 |
Creators | Zheng, Guizhen |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | 4007466 bytes, application/pdf |
Page generated in 0.0022 seconds