Return to search

Dynamique évolutive de l'hybridation face aux environnements extrêmes

Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2024 / L'évolution est souvent perçue comme un processus lent, s'étalant sur de très longues périodes. Cependant, un phénomène qui peut jouer un rôle rapide dans l'évolution adaptative est l'hybridation, car elle entraîne une augmentation instantanée de nouveaux génotypes au sein des populations. Il n'est pas étonnant que l'hybridation ait captivé les scientifiques pendant des décennies. Tout d'abord, en raison de son attrait mystérieux, d'autant plus qu'autrefois, les organismes hybrides étaient perçus comme des « créatures monstrueuses » incapables de se reproduire. Cependant, le rôle de l'hybridation dans des processus évolutifs majeurs, tels que la spéciation ou la radiation adaptative, a remis en question cette vision passéiste et a ravivé l'intérêt pour comprendre leurs dynamiques évolutives. Certains hybrides peuvent coloniser des niches écologiques inaccessibles aux parents, probablement grâce à la plasticité accrue de leur génome favorisant une exploration rapide de nouveaux phénotypes. Cependant, la majorité des études comparant la valeur adaptative des hybrides à celle des espèces parentales ont examiné les effets immédiats après l'hybridation, négligeant leur évolution sur le long terme. Par conséquent, les répercussions négatives de l'hybridation ont principalement été axées sur l'isolement reproductif, avec moins d'attention portée à l'incidence sur leur potentiel adaptatif. Pour combler ces lacunes, cette thèse vise à explorer les dynamiques évolutives des hybrides depuis leur formation jusqu'à leur éventuelle adaptation à des environnements extrêmes. Pour atteindre cet objectif, nous avons exploité la prédisposition des espèces de levure à s'hybrider naturellement, en utilisant ce système pour croiser Saccharomyces cerevisiae et Saccharomyces paradoxus. Ces deux espèces, qui ont divergé il y a entre cinq et dix millions d'années, occupent des niches écologiques similaires et montrent des signes d'introgression, avec un potentiel adaptatif dans certains cas, révélant un historique naturel d'hybridation. En raison de la diversité génétique accrue offerte par l'hybridation, nous avançons l'hypothèse que les hybrides s'adapteront plus rapidement que les espèces parentales. Nous avons ainsi évalué leur potentiel adaptatif dans un environnement contenant une molécule toxique qui endommage directement l'ADN, simulant l'effet du rayonnement UV (dorénavant désigné comme conditions mimétiques UV), un défi en termes d'adaptation. Nous avons exposé 180 populations, incluant des hybrides ainsi que leurs souches parentales, aux conditions mimétiques UV et, en parallèle, aux conditions contrôle, pendant environ 100 générations, suivant une approche d'évolution expérimentale. Contrairement à notre hypothèse initiale, nous avons constaté que les taux d'adaptation étaient inférieurs chez les hybrides par rapport aux espèces parentales. Les conditions mimétiques UV accroissent l'instabilité génomique et pourraient davantage affecter les génomes hybrides intrinsèquement instables. Par conséquent, nous avons émis l'hypothèse que la moindre adaptation des hybrides pourrait résulter d'une accumulation plus rapide de changements génomiques, mais aucune telle association n'a été trouvée. Alternativement, les hybrides pourraient manquer d'accès aux mêmes mutations que les espèces parentales en raison de leur architecture génomique particulière. Cependant, nous avons remarqué que l'un des gènes les plus mutés (PDR1) était le même pour les trois génotypes, révélant ainsi un parallélisme évolutif remarquable et suggérant des mécanismes d'adaptation moléculaire similaires. Nous avons constaté que les mutations dans ce gène étaient principalement homozygotes chez les parents, mais hétérozygotes chez les hybrides, ce qui pourrait limiter le potentiel d'adaptation des hybrides. Nous avons donc avancé l'hypothèse qu'un taux de perte d'hétérozygotie (LOH) plus faible chez les hybrides pourrait entraver l'augmentation de leur valeur adaptative. Pour tester cette hypothèse: 1) nous avons utilisé l'édition du génome pour démontrer que les mutations présentent une dominance incomplète, nécessitant l'homozygotie pour être pleinement bénéfiques. C'est seulement ainsi que les mutations deviennent visibles pour la sélection et peuvent contourner le tamis de Haldane, qui favorise la fixation des mutations dominantes; et 2) nous avons remonté dans le temps à l'aide de « fossiles » congelés, afin de suivre la fréquence des mutations homozygotes et hétérozygotes dans nos trois génotypes. Nos résultats confirment que la LOH se produit à un rythme plus faible chez les hybrides que chez les parents. Globalement, nos découvertes révèlent que le tamis de Haldane entrave l'adaptation hybride, mettant en lumière une contrainte inhérente de leur architecture génomique qui peut restreindre l'impact de l'hybridation dans l'évolution adaptative. Dans l'ensemble, nos recherches soulignent l'impact de la LOH sur les taux d'adaptation, tout en illustrant comment les interactions alléliques limitent les dynamiques évolutives des hybrides. / Evolution is often perceived as a slow process, spanning very long periods. However, a phenomenon that can play a rapid role in adaptive evolution is hybridization, as it leads to an instantaneous increase in new genotypes within populations. It is not surprising that hybridization has captivated scientists for decades, initially due to its mysterious appeal, especially considering that hybrid organisms were once perceived as « monstrous creatures » incapable of reproduction. However, the role of hybridization in major evolutionary processes, such as speciation or adaptive radiation, has challenged this antiquated view and reignited interest in understanding their evolutionary dynamics. Some hybrids can colonize ecological niches inaccessible to parents, likely due to the increased plasticity of their genome favoring the rapid exploration of new phenotypes. However, most studies comparing the adaptive value of hybrids to that of parental species have focused on immediate post-hybridization effects, overlooking their long-term evolution. Consequently, the negative impacts of hybridization have primarily focused on reproductive isolation, with less attention paid to their adaptive potential. To address these gaps, this thesis aims to explore the evolutionary dynamics of hybrids from their formation to their eventual adaptation to extreme environments. To achieve this goal, we leveraged the predisposition of yeast species to naturally hybridize, using this system to cross Saccharomyces cerevisiae and Saccharomyces paradoxus. These two species, which diverged between five and ten million years ago, occupy similar ecological niches and show signs of introgression, with adaptive potential in some cases, revealing a natural history of hybridization. Due to the increased genetic diversity offered by hybridization, we hypothesize that hybrids will adapt more rapidly than parental species. We thus assessed their adaptive potential in an environment containing a toxic molecule that directly damages DNA, mimicking the effect of UV radiation (hereafter referred to as UV mimetic conditions), which poses a challenge in terms of adaptation. We exposed 180 populations, including hybrids and their parental strains, to UVmimicking conditions and, in parallel, to control conditions, for about 100 generations, following an experimental evolution approach. Contrary to our initial hypothesis, we found that adaptation rates were lower in hybrids compared to parental species. UV mimetic conditions increase genomic instability, potentially exerting a greater impact on inherently unstable hybrid genomes. Therefore, we next hypothesized that the lower adaptation of hybrids could result from a faster accumulation of genomic changes, although no such association was found. Alternatively, hybrids may lack access to the same mutations as parental species because of their unique genomic architecture. However, we observed that one of the most mutated genes (PDR1) was the same for all three genotypes, revealing a remarkable evolutionary parallelism and suggesting similar molecular adaptation mechanisms. We found that mutations in this gene were mainly homozygous in parents but heterozygous in the hybrids, which could limit the adaptive potential of the hybrids. We thus hypothesized that a lower rate of loss of heterozygosity (LOH) in hybrids could hinder the increase in their adaptive value. To test this hypothesis: 1) we used genome editing to demonstrate that mutations exhibit incomplete dominance, requiring homozygosity to be fully beneficial. Only then do mutations become visible to selection and can bypass Haldane's sieve, which favors the fixation of dominant mutations; and 2) we traced back in time using frozen « fossils » to track the frequency of homozygous and heterozygous mutations in our three genotypes. Our results confirm that LOH occurs at a slower pace in hybrids than in parents. Together, our results show that Haldane's sieve slows down adaptation in hybrids, revealing an intrinsic constraint of their genomic architecture that can limit the impact of hybridization in adaptive evolution. In summary, our studies emphasize the impact of the LOH on adaptation rates, while illustrating how allelic interactions limit the evolutionary dynamics of hybrids.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/152035
Date21 October 2024
CreatorsBautista, Carla
ContributorsLandry, Christian R.
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi, 202 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0029 seconds