Return to search

Scattering of guided waves in thick gratings at extreme angles

The aim of this project was to develop a passive optical compensating arrangement that would allow the formation and continued stability of interference patterns over a long timescale and also to investigate optical wave scattering in thick gratings at extreme angles of scattering. A novel passive arrangement based on a Sagnac interferometer is described that produces interference patterns more stable than those produced by a conventional arrangement. An analysis of the arrangement is presented that shows it to be an order of magnitude more stable than an equivalent conventional approach. The excellent fringe stability allowed holographic gratings with small periods (~ 0.5 μm) to be written in photorefractive lithium niobate with low intensity writing fields (~mW/cm2) produced by a He:Ne laser, despite long grating fabrication times (~ 1000 s). This was possible because the optical arrangement compensated for phase shifts introduced by translational and rotational mirror motion caused by environmental perturbations. It was shown that the rapid introduction of a phase shift in one of the writing fields can change the direction of energy flow in the two-wave mixing process. It was found that the improvement in stability of the modified Sagnac arrangement over a conventional interferometer decreased when the crossing angle was increased and that the point about which the mirrors are rotated greatly affects the stability of the arrangement. For a crossing angle of 12 degrees, the modified Sagnac arrangement is more than twice as stable when the mirrors are rotated about their midpoints, rather than their endpoints. Investigations into scattering in the extremely asymmetrical scattering (EAS) geometry were undertaken by scattering light from a 532nm Nd:YAG laser off gratings written in photorefractive barium titanate and lithium niobate. Despite the difficulties posed by background noise, there was very good agreement between the observed scattered field and that predicted by a previously established theoretical model. Thus, this work represents the first experimental observation of EAS in the optical part of the spectrum.

Identiferoai:union.ndltd.org:ADTP/265339
Date January 2006
CreatorsKurth, Martin Lyndon
PublisherQueensland University of Technology
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsCopyright Martin Lyndon Kurth

Page generated in 0.0055 seconds