Esse trabalho contempla o estudo sobre o estimador de mínimos quadrados obtido para sistemas lineares discretos sujeitos a ruídos aditivos e a ruídos multiplicativos em seus parâmetros. Supõe-se, adicionalmente, que os parâmetros do sistema estão sujeitos a saltos Markovianos, e que a cadeia de Markov não é conhecida. A solução do problema, sob essas hipóteses, é uma inovação apresentada nesse trabalho. Sob as mesmas hipóteses, o caso estacionário também foi contemplado, e o trabalho apresenta uma demonstração para a convergência da matriz de covariância dos erros do estimador a um valor estacionário, supondo-se estabilidade do sistema e ergodicidade da cadeia de Markov associada. Mostra-se, também, que existe uma única solução positiva semi-definida para a equação de Riccati estacionária e, ainda mais, que tal solução é o limite da matriz de covariância dos erros. A partir da introdução de uma hipótese adicional - de que os parâmetros do sistema estão sujeitos a incertezas na forma de politopos convexos - constrói-se um filtro linear dinâmico em que as iterações possuem estabilidade na média quadrática e que minimiza o limitante superior para o valor esperado do erro quadrático. Uma formulação do tipo LMI (Linear Matrix Inequalities) é proposta para a solução do problema. / This thesis deals with the linear filtering problem for discrete-time Markov jump linear systems with both additive and multiplicative noises. It is assumed that the values of the Markov chain are not available. This is the first time that a solution to the problem with these parameters is presented. By using some usual geometric arguments it is obtained a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the associated Lyapunov and Riccati like equations is presented. By adding an additional hypotesis - that the parameters of the systems are subject to convex polytopic uncertainties - it was designed a dynamic linear filter such that the closed loop system is mean square stable and minimizes an upper bound for the stationary expected value of the square error. A Linear Matrix Inequalities (LMI) formulation is proposed to solve the problem.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-19072013-172025 |
Date | 08 November 2012 |
Creators | Benites, Guilherme Rafael Antonelli Molina |
Contributors | Costa, Oswaldo Luiz do Valle |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds