Composite monocoque frames are becoming increasingly more popular inperformance cars. Compared to their steel and aluminum counterparts theyprovide additional torsional stiffness at the cost of less weight. This thesiscovers the complex optimization process of a monocoque applied within theregulations of a Formula Student competition. It aims to give the reader a goodunderstanding of the rules and how they affect the optimization process whilegenerating an optimized design used in the competition of Formula StudentGermany -21 by KTH Formula Student. The rules of Formula Student dictate the structural requirements on themonocoque based on a steel space frame. All materials except low carbon steelused in the structure require proof of equivalence through regulated testingmethods. However, this thesis shows that the regulated setup can severelyaffect results through a deep analysis of the testing methodology.The torsional stiffness of the monocoque is analyzed and optimized accordingto the results of a free-size optimization. Both through slight adjustmentsin chassis geometry and the laminate, resulting in a theoretical torsionalstiffness of 9.9 kNm/deg, more than five times as much as the old space frame.Weighing in at 20 kg, a significant weight reduction of about 10 kg, eventhough it was larger, with a surface area of about 4.2 m2. This design will be the first monocoque manufactured within KTH FormulaStudent since 2010. Therefore, a lot of focus was put on analyzing the rulesand lay the ground for future development by conducting tests on optimizedpanels. These results have the potential to further reduce the weight of a futuremonocoque with a different geometry. / Allt fler sportbilar använder självbärande karosser i komposit. Till skillnadfrån deras stål och aluminium motsvarighet så tillåter kompositkonstruktionenen styvare konstruktion för samma vikt. Denna rapport går igenom denkomplicerade optimeringsprocessen för en självbärande kaross i kolfiber appliceratinom tävlingen Formula Student. Målet med rapporten är att läsaren ska fåen bättre förståelse av reglerna och dess påverkan på optimeringsprocessensamtidigt som en optimerad design presenteras för användandet i “FormulaStudent Germany -21” åt KTH Formula Student. Reglerna inom Formula Student ställer strukturella krav på den självbärandekarossen baserat på en standard för stålrörsramar. Alla material förutomlåg kols stål som används i strukturen kräver att ekvivalens bevisas genomspecifika tester. Denna rapport visar att dessa tester kan generera olika resultatgenom en djup analys av metodiken. Torsions styvheten av karossen analyseras och optimeras enligt reglernagenom en så kallad free-size optimization". Genom att variera geometri ochkomposit utvecklades en kaross som var mer än 5 gånger så styv som dentidigare stålrörsramen med en teoretisk torsions styvhet på 9.9kNm/deg. Meden vikt på 20 kg reducerades även vikten 10 kg, även om den var större, ochhade en area på cirka 4.2m2. Denna design kommer att vara den första självbärande komposit karossentillverkad inom KTH Formula Student sedan 2010. Efter den djupa analysen avreglerna, testas då de optimerade panelerna, vilket lägger grunden för framtidautvecklingen. Dessa resultat har potential att reducera vikten ytterligare av enframtida kaross, genom ändringar i geometrin.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-331947 |
Date | January 2023 |
Creators | Wikström, Robin |
Publisher | KTH, Lättkonstruktioner, marina system, flyg- och rymdteknik, rörelsemekanik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2022:052 |
Page generated in 0.0064 seconds