• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • Tagged with
  • 17
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simplified Tools and Methods for Chassis and Vehicle Dynamics Development for FSAE Vehicles

Jabs, Fredrick W. 08 October 2012 (has links)
No description available.
2

Simulating Dynamic Vehicle Maneuvers Using Finite Elements For Use In Design Of Integrated Composite Structure

Angelini, Nicholas Alexander 07 April 2014 (has links)
Formula SAE (FSAE) chassis systems are increasing being manufactured with integrated composite structures in an effort to increase the performance of the system while decreasing weight. The increased use of composite structures requires more details of the loading conditions and evaluation metrics than the mild steel structures they are replacing. The prototypical FSAE steel space frame chassis designs are heavily structured around the mandated safety rules that doubled as mostly satisfactory structures for vehicle loads. The use of composite structures and the directionality of their material properties has created a need for more detailed loading scenarios to evaluate their ability to transfer load. This thesis presents a framework for evaluating the chassis structure not only through the standard static twist analysis, but increased use of modal analysis and dynamic vehicle maneuvers using an attached suspension. The suspension joints and springs/dampers are modeled using Abaqus Connector Elements, allowing for the use of complex kinematic degrees of freedom definitions required to accurately model the suspension behavior. The elements used to represent the joints and springs are detailed as well as their superiority over traditional multi-point constraints in this context. The use of modal analysis is used for a more direct comparison of not only the efficiency of stiffness in the chassis alone, but also how the chassis interacts with the suspension. The natural frequencies from the modal analysis along with the static twist distribution along the chassis are presented as a replacement for the static torsional stiffness performance metric. By using dynamic vehicle maneuvers the chassis-suspension structure can be evaluated based on loads developed during the typical use of the FSAE vehicle. The dynamic nature of the analysis also allows for the inclusion of mass in the loading profile as well as the load variation with time that can be hard to achieve with static analysis. The framework for a bump event as well as a constant-speed-constant-radius turn are presented. The bump analysis is designed to evaluate the system's response to straight line dynamic events, while the turning maneuver evaluates the lateral components of the suspension load transfer capabilities. For the turn analysis both a spring/damper tire model using connector elements and a rolling tire model are presented. Intermediate checks on suspension and chassis behavior are evaluated to verify the modeling techniques; while the maneuver results are evaluated based on trends and overall motion rather than magnitudes due to lack of data at the time of the analysis. / Master of Science
3

Development of a Finite Element Model for Predicting the Impact Energy Absorbing Performance of a Composite Structure

Roberts, Matthew Lowell 01 June 2014 (has links)
Because of their high strength-to-weight ratio, Fiber Reinforced Composite (FRC) materials are well suited for use in high performance racing applications where weight must be kept to a minimum. Formula SAE (FSAE) race cars are designed and built by college students, roughly following the model of a scaled down Formula One car. Strict regulations are placed on specific components of the car in the interest of equalizing competition and ensuring the safety of the drivers. Students are required to construct a survival cell (the chassis), which can resist large amounts of energy in the event of a crash, with an energy absorbing device at the front of the vehicle. The nose cone of the Cal Poly FSAE car is constructed as a carbon fiber shell designed to act as this sacrificial energy absorbing device. One difficulty associated with using FRC materials is that the anisotropic properties can lead to a variety of complex failure modes such as buckling, delamination, matrix cracking, and fiber breakage, all of which absorb different amounts of energy. In order to accurately predict the behavior of the nose cone so that it meets the requirements set forth by SAE, an initial finite element model has been constructed. This model uses the test results from another paper to construct an explicit non-linear dynamic analysis in Abaqus which simulates the axial crushing of a thin walled composite tube between two rigid plates. The modeling techniques discussed in this paper will be used as the basis for a future thesis dedicated to designing the nose cone for the Cal Poly FSAE car.
4

Úprava atmosférického motoru na motor přeplňovaný / Modification of Naturally Aspirated Engine to Turbocharged Engine

Fajkus, Martin January 2011 (has links)
Aim of this diploma thesis is the modification of naturally aspirated engine for Formula Student competition to turbocharged version. Modification which were made are based on the issue knowledge and calculations. The input data were obtained from 3D scanning and measurements, at the school laboratories. All 3D models were created in Pro / Engineer. Input data for the computional analysis was developed in Lotus Engine Simulation. Computational analysis was performed in ANSYS by finite element method. Calculations had to simulate a piston behavior at the critical situations where the engine is under the maxiumum load.
5

Zvýšení pružnosti zážehového závodního motoru přeplňováním / Increasing SI Racing Engine Performance by Turbocharging

Dolák, Jindřich January 2011 (has links)
Aim of this diploma thesis is the turbocharger design calculation for single cylinder SI engine for Formula Student. This thesis includes a mathematical model of the engine, which is created in the Lotus Engine Simulation. This model applies for tuning the regulation of turbocharger charging pressure. Lotus uses the turbine waste gate valve for this regulation. The results of the simulation are the charging pressure,lengths of the intake manifold and etc. These parameters ensure the optimal engine qualities. The knowlege and results of the simulations are summarized at the conclusion.
6

Modeling of Multibody Dynamics in Formula SAE Vehicle Suspension Systems

Bansode, Swapnil Pravin 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Indiana University–Purdue University Indianapolis student team Jaguar has been participating in the electric Formula SAE (FSAE) vehicle competitions in the past few years. There is an urgent need to develop a design tool for improving the performance of the vehicle. In this thesis, multibody dynamics (MBD) models have been developed which allow the student team to improve their vehicle design, while reducing the required time and actual testing costs. Although there were some studies about MBD analyses for vehicles in literature, a detailed modeling study of key parameters is still missing. Specifically, the effect of suspension system on the vehicle performance is not well studied. The objective of the thesis is to develop an MBD based model to improve the FSAE vehicle’s performance. Based on the objective and knowledge gap, the following research tasks are proposed: (1) MBD modeling of current suspension systems; (2) Modification of suspension systems, and (3) Evaluation of performance of modified suspension systems. The models for the front suspension system, rear suspension system, and full assembly are created, and a series of MBD analyses are conducted. The parameters of the vehicle by conducting virtual tests on the suspension model and overall vehicle model are studied. In this work, two main virtual tests are performed. First, parallel wheel travel test on suspension system, in which the individual suspension system is subject to equal force on both sides. The test helps understand the variation in stability parameters, such as camber angle, toe angle, motion ratio, and roll center location. Second, skid-pad test on full assembly of the vehicle. The test assists in understanding the vehicle’s behavior in constant radius cornering and the tire side slip angle variation, as it is one of the important parameters controlling alignment of the vehicle in this test. Based on the vehicle’s dynamics knowledge obtained from the existing vehicle, a modified version of the FSAE vehicle is proposed, which can provide a better cornering performance with minimum upgrades and cost possible. Based on the results from the parallel wheel travel test and skid-pad test, the lateral load transfer method is used to control the vehicle slip, by making changes to the geometry of the vehicle and obtaining appropriate roll center height for both front and rear suspension system. The results show that the stiffness in front suspension system and rear suspension system are controlled by manipulating roll center height. This study has provided insightful understanding of the parameters and forces involved in suspension system and their variations in different events influencing vehicle stability. Moreover, the MBD approach developed in this work can be readily extended to other commercial vehicles and sports vehicles.
7

Torsional Stiffness and Natural Frequency Analysis of a Formula SAE Vehicle Carbon Fiber Reinforced Polymer Chassis Using Finite Element Analysis

Herrmann, Manuel 01 December 2016 (has links) (PDF)
Finite element is used to predict the torsional stiffness and natural frequency response of a FSAE vehicle hybrid chassis, utilizing a carbon fiber reinforced polymer sandwich structure monocoque and a tubular steel spaceframe. To accurately model the stiffness response of the sandwich structure, a series of material tests for different fiber types has been performed and the material properties have been validated by modeling a simple three-point-bend test panel and comparing the results with a physical test. The torsional stiffness model of the chassis was validated with a physical test, too. The stiffness prediction matches the test results within 6%. The model was then used to model the natural frequency response by adding and adjusting the materials’ densities in order to match physical mass properties. A hypothesis is made to explain the failure of the engine mounts under the dynamic response of the frame.
8

LIGHTWEIGHT, LOW COST, AUTOMOTIVE DATA ACQUISITION AND TELEMETRY SYSTEM

ALFORD, DANIEL ABE 23 May 2005 (has links)
No description available.
9

Modeling of Multibody Dynamics in Formula SAE Vehicle Suspension Systems

SWAPNIL PRAVIN BANSODE (8812358) 08 May 2020 (has links)
<div>Indiana University–Purdue University Indianapolis student team Jaguar has been participating in the electric Formula SAE (FSAE) vehicle competitions in the past few years. There is an urgent need to develop a design tool for improving the performance of the vehicle. In this thesis, multibody dynamics (MBD) models have been developed which allow the student team to improve their vehicle design, while reducing the required time and actual testing costs. Although there were some studies about MBD analyses for vehicles in literature, a detailed modeling study of key parameters is still missing. Specifically, the effect of suspension system on the vehicle performance is not well studied. </div><div>The objective of the thesis is to develop an MBD based model to improve the FSAE vehicle’s performance. Based on the objective and knowledge gap, the following research tasks are proposed: (1) MBD modeling of current suspension systems; (2) Modification of suspension systems, and (3) Evaluation of performance of modified suspension systems. </div><div>The models for the front suspension system, rear suspension system, and full assembly are created, and a series of MBD analyses are conducted. The parameters of the vehicle by conducting virtual tests on the suspension model and overall vehicle model are studied. In this work, two main virtual tests are performed. First, parallel wheel travel test on suspension system, in which the individual suspension system is subject to equal force on both sides. The test helps understand the variation in stability parameters, such as camber angle, toe angle, motion ratio, and roll center location. Second, skid-pad test on full assembly of the vehicle. The test assists in understanding the vehicle’s behavior in constant radius cornering and the tire side slip angle variation, as it is one of the important parameters controlling alignment of the vehicle in this test.</div><div>Based on the vehicle’s dynamics knowledge obtained from the existing vehicle, a modified version of the FSAE vehicle is proposed, which can provide a better cornering performance with minimum upgrades and cost possible. Based on the results from the parallel wheel travel test and skid-pad test, the lateral load transfer method is used to control the vehicle slip, by making changes to the geometry of the vehicle and obtaining appropriate roll center height for both front and rear suspension system. The results show that the stiffness in front suspension system and rear suspension system are controlled by manipulating roll center height. This study has provided insightful understanding of the parameters and forces involved in suspension system and their variations in different events influencing vehicle stability. Moreover, the MBD approach developed in this work can be readily extended to other commercial vehicles and sports vehicles.</div><div><br></div>
10

Torsional Stiffness Calculation of CFRP Hybrid Chassis using Finite Element Method : Development of calculation methodology of Formula Student CFRP Chassis / Vridstyvhetsberäkning av kolfiberkompositchassi med hjälp av Finita Elementmetoden : Utveckling av beräkningsrutiner för ett kolfiberbaserat Formula Student-chassi

Assaye, Abb January 2020 (has links)
Composite sandwich structures are being used in the automotive and aerospace industries at an increasing rate due to their high strength and stiffness per unit weight.  Many teams in the world’s largest engineering competition for students, Formula Student, have embraced these types of structures and are using them in their chassis with the intent of increasing the torsional stiffness per unit weight.   The Formula Student team at Karlstad University, Clear River Racing, has since 2017 successfully built three carbon fiber based sandwich structure chassis. A big challenge when designing this type of chassis is the lack of strategy regarding torsional stiffness simulations. Thus, the goal of this thesis project was to provide the organization with a set of accurate yet relatively simple methods of modelling and simulating the torsional stiffness of the chassis.   The first step in achieving the goal of the thesis was the implementation of simplifications to the material model. These simplifications were mainly targeted towards the aluminum honeycomb core. In order to cut computational times and reduce complexity, a continuum model with orthotropic material properties was used instead of the intricate cellular structure of the core. To validate the accuracy of this simplification, the in-plane elastic modulus of the core was simulated in the finite element software Abaqus. The stiffness obtained through simulations was 0.44 % larger than the theoretical value. The conclusion was therefore made that the orthotropic continuum model was an accurate and effective representation of the core.   Furthermore, simplifications regarding the adhesive film in the core-carbon fiber interfaces were made by using constraints in Abaqus instead of modelling the adhesive films as individual parts. To validate this simplification and the overall material model for the sandwich structure, a three-point bend test was simulated in Abaqus and conducted physically. The stiffness for the sandwich panel obtained through physical testing was 2.4 % larger than the simulated stiffness. The conclusion was made that the simplifications in the material modelling did not affect the accuracy in a significant way.   Finally, the torsional stiffness of the 2020 CFRP chassis was found to be 12409.75 Nm/degree.   In addition to evaluating previously mentioned simplifications, this thesis also serves as a comprehensive guide on how the modelling of the chassis and how the three-point bend test can take place in regards to boundary conditions, coordinate system assignments and layup definitions.

Page generated in 0.0164 seconds