Return to search

Mechanism of action of potential anticancer drugs

Traditionally, inoperable or metastatic cancers have been treated by causing massive DNA damage in order to induce self-destruction (apoptosis) of the rapidly multiplying cancer cells. Initially, this strategy works for many cancers, in particular those which express normal p53 tumor suppressor protein. However, most cancers eventually aquire mutations in either p53 or other signaling molecules and fail to initiate apoptosis in response to severe DNA damage. During this study three types of compounds were investigated for their DNA damaging and anticancer effects: a pair of novel metal containing compounds, a pair of natural products, and a known synthetic drug which had been used many years ago for completely different indication. It was shown that all stop the growth of cancer cells and that the latter two classes do not require functional p53 because they work equally well in cells with normal (wildtype), mutant or no p53. The two nickel complexes investigated in this dissertation, differ in their ability to cause DNA damage and cell death. The oxidized form of the nickel complex, [Ni(CR-2H)] 2+ causes DNA damage and cell death at a much lower concentration than its reduced counterpart [Ni(CR)] 2+ . The phenanthridine alkaloids, Sanguinarine and Chelerythine cause high levels of DNA strand breaks and extremely rapid apoptosis which is not due to DNA damage because the quick onset precludes extensive signaling. The effects of the phenanthridines were linked to production of large amounts of reactive oxygen species (ROS), in particular hydrogen peroxide (H 2 O 2 ). The importance of ROS for the action of anticancer drugs as well as antibiotics is increasingly being recognized. In addition we also investigated the thioxanthone Lucanthone or Miracil D (which was used for the treatment of parasitic worms more than 50 years ago). It causes DNA strand breaks and apoptosis. Apoptosis occurs on a timescale consistent with signaling. However, p53 does not seem to be involved and alternative mechanisms are being investigated. This work provides new directions for designing novel anticancer drugs that are not subject to the limitations of DNA damaging agents.

Identiferoai:union.ndltd.org:pacific.edu/oai:scholarlycommons.pacific.edu:uop_etds-3367
Date01 January 2008
CreatorsMatkar, Smita S.
PublisherScholarly Commons
Source SetsUniversity of the Pacific
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of the Pacific Theses and Dissertations

Page generated in 0.002 seconds