Cette thèse porte sur la commande variant dans le temps avec comme fil directeur l’application au contrôle d’attitude de satellites. Nous avons étudié trois types de commande: une commande à commutation, une commande LPV et une commande adaptative directe. Pour cette dernière nous avons proposé des résultats théoriques nouveaux portant sur la structuration du gain et de l’adaptation. Les résultats ont été validés en simulation et sont testés à bord d’un satellite. En partant de la loi à commutation actuellement utilisée sur les satellites Myriade, une première partie de nos travaux est dédiée à la commande LPV. Notre approche, basée sur la spécification des objectifs de commande à travers un modèle de référence LPV, permet d'obtenir de nouveaux algorithmes exprimés dans ce formalisme. Testées en simulation, ces lois de commande répondent à la problématique de notre application. Toutefois, le choix du modèle de référence LPV s'avère délicat. Cette difficulté a été levée en utilisant la commande adaptative. Dans cette approche, les spécifications sur le comportement temps-variant sont traduites par des contraintes au niveau des lois d'adaptation des gains de commande. Nous introduisons ainsi une nouvelle méthode de synthèse de lois adaptatives structurées. Les preuves de stabilité établies s'appuient sur des outils de la théorie de Lyapunov. Les résultats obtenus sur un simulateur complet montrent l'intérêt de tels algorithmes adaptatifs. Ils permettent en particulier de modifier la dynamique du satellite selon les capacités disponibles des actionneurs. Sur la base de ces résultats, une campagne d’essai en vol sur le satellite PICARD est actuellement en cours. / This manuscript considers time varying control, with a strong emphasis on a satellite attitude control application. Three types of control structures have been studied: a switch-based approach, LPV control and direct adaptive control. In this last field we have introduced new theoretical results which allow structuring the gain and the adaptation law. The results have been validated in simulation and are currently tested on board a satellite. Starting from the switch-based control law currently implemented on the Myriade satellites, a first part of our work isdedicated to LPV control. Based on the specification of the control objectives by using of an LPV reference model, our approach allows obtaining new control algorithms expressed within this framework. The simulations carried out with theLPV algorithms obtained by using this method show that they meet the needs of our application. Nonetheless, the choice of a reference model proves to be difficult. This obstacle has been surpassed by using direct adaptive control. In this approach, specifications regarding the timevarying behaviour are added through constraints on the laws defining the control gains adaptation. We thus introduce anew synthesis method, based on which structured adaptive control laws are obtained. Stability proofs are established based on tools of the Lyapunov theory.The results obtained on a complete simulator show the interest of using such adaptive algorithms, which allow in particular to modify the satellite dynamics depending on the available capacity of the actuators. Based on these positive results, a fight-test campaign on the PICARD satellite is underway.
Identifer | oai:union.ndltd.org:theses.fr/2014ESAE0006 |
Date | 11 February 2014 |
Creators | Luzi, Alexandru |
Contributors | Toulouse, ISAE, Biannic, Jean-Marc, Peaucelle, Dimitri |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds