• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linear Parameter Varying Path Following Control of a Small Fixed Wing Unmanned Aerial Vehicle

Guthrie, Kyle Thomas 02 September 2013 (has links)
A mathematical model of a small fixed-wing aircraft was developed through application of parameter estimation techniques to simulated flight test data. Multiple controllers were devised based on this model for path following, including a self-scheduled linear parameter-varying (LPV) controller with path curvature as a scheduling parameter. The robustness and performance of these controllers were tested in a rigorous MATLAB simulation environment that included steady winds and gusts, measurement noise, delays, and model uncertainties. The linear controllers designed within were found to be robust to the disturbances and uncertainties in the simulation environment, and had similar or better performance in comparison to a nonlinear control law operating in an inner-outer loop structure. Steps are being taken to implement the resulting controllers on the unmanned aerial vehicle (UAV) testbed in the Nonlinear Systems Laboratory at Virginia Tech. / Master of Science
2

Commande variant dans le temps pour le contrôle d'attitude de satellites / Time varying satellite attitude control

Luzi, Alexandru 11 February 2014 (has links)
Cette thèse porte sur la commande variant dans le temps avec comme fil directeur l’application au contrôle d’attitude de satellites. Nous avons étudié trois types de commande: une commande à commutation, une commande LPV et une commande adaptative directe. Pour cette dernière nous avons proposé des résultats théoriques nouveaux portant sur la structuration du gain et de l’adaptation. Les résultats ont été validés en simulation et sont testés à bord d’un satellite. En partant de la loi à commutation actuellement utilisée sur les satellites Myriade, une première partie de nos travaux est dédiée à la commande LPV. Notre approche, basée sur la spécification des objectifs de commande à travers un modèle de référence LPV, permet d'obtenir de nouveaux algorithmes exprimés dans ce formalisme. Testées en simulation, ces lois de commande répondent à la problématique de notre application. Toutefois, le choix du modèle de référence LPV s'avère délicat. Cette difficulté a été levée en utilisant la commande adaptative. Dans cette approche, les spécifications sur le comportement temps-variant sont traduites par des contraintes au niveau des lois d'adaptation des gains de commande. Nous introduisons ainsi une nouvelle méthode de synthèse de lois adaptatives structurées. Les preuves de stabilité établies s'appuient sur des outils de la théorie de Lyapunov. Les résultats obtenus sur un simulateur complet montrent l'intérêt de tels algorithmes adaptatifs. Ils permettent en particulier de modifier la dynamique du satellite selon les capacités disponibles des actionneurs. Sur la base de ces résultats, une campagne d’essai en vol sur le satellite PICARD est actuellement en cours. / This manuscript considers time varying control, with a strong emphasis on a satellite attitude control application. Three types of control structures have been studied: a switch-based approach, LPV control and direct adaptive control. In this last field we have introduced new theoretical results which allow structuring the gain and the adaptation law. The results have been validated in simulation and are currently tested on board a satellite. Starting from the switch-based control law currently implemented on the Myriade satellites, a first part of our work isdedicated to LPV control. Based on the specification of the control objectives by using of an LPV reference model, our approach allows obtaining new control algorithms expressed within this framework. The simulations carried out with theLPV algorithms obtained by using this method show that they meet the needs of our application. Nonetheless, the choice of a reference model proves to be difficult. This obstacle has been surpassed by using direct adaptive control. In this approach, specifications regarding the timevarying behaviour are added through constraints on the laws defining the control gains adaptation. We thus introduce anew synthesis method, based on which structured adaptive control laws are obtained. Stability proofs are established based on tools of the Lyapunov theory.The results obtained on a complete simulator show the interest of using such adaptive algorithms, which allow in particular to modify the satellite dynamics depending on the available capacity of the actuators. Based on these positive results, a fight-test campaign on the PICARD satellite is underway.
3

Commande robuste de systèmes non linéaires incertains. / Robust control of nonlinear systems

De Hillerin, Safta 03 November 2011 (has links)
Cette thèse étudie l'approche LPV pour la commande robuste des systèmes non linéaires. Son originalité est de proposer pour la première fois un cadre rigoureux permettant de résoudre efficacement des problèmes de synthèse non linéaire. L'approche LPV a été proposée comme une extension de l'approche H-infini dans le contexte des systèmes LPV (« Linéaires à Paramètres Variant dans le temps »), voire non linéaires. Quoique prometteuse, cette approche pour la commande des systèmes non linéaires restait peu utilisée. En effet, au-delà même de certaines limitations théoriques, la nature des solutions obtenues semblait inadéquate. Cette question ouverte est notre point de départ. Nous montrons tout d'abord que la faible variation des correcteurs constatée est due avant tout à la nature du schéma informationnel utilisé traditionnellement lors de la synthèse LPV, et que sous des hypothèses raisonnables, le cadre LPV peut permettre de recouvrir des stratégies de type « linéarisation par bouclage ». Ce point étant acquis, une deuxième difficulté réside dans l'obtention effective de correcteurs non linéaires donnant des garanties de performance. Nous proposons un cadre rigoureux permettant de résoudre efficacement un problème de synthèse incrémentale pondérée, par la résolution d'un problème LPV associé à un schéma informationnel spécifique compatible avec celui identifié dans la première partie. Cette étude et son aboutissement à la définition d'un cadre formel et d'une procédure complète d'obtention de correcteurs, incluant des méthodes de réduction de complexité, donnent des arguments puissants en faveur de l'approche LPV pour la commande robuste de systèmes non linéaires. / This thesis studies the LPV approach for the robust control of nonlinear systems. Its originality is to propose for the first time a rigorous framework allowing to solve efficiently nonlinear synthesis problems.The LPV approach was proposed as an extension of the H-infinity approach in the context of LPV (Linear Parameter-Varying) systems and nonlinear systems. Although this approach seemed promising, it was not much used in practise. Indeed, beyond certain theoretical limitations, the nature itself of the obtained solutions did not seem adequate. This open question constitutes the starting point of our work.We first prove that the observed weak variation of the controllers is in fact mostly due to the information structure traditionally used for LPV synthesis, and that under reasonable assumptions, the LPV framework can overlap feedback linearization strategies. This point having been resolved, a second difficulty lies in the actual achievement of nonlinear controllers yielding performance guarantees. We propose a rigorous framework allowing to solve efficiently an incremental synthesis problem, through the resolution of an LPV problem associated to a specific information structure compatible with the one identified in the first part.This study and its corollary description of a formal framework and of a complete controller synthesis procedure, including complexity reduction methods, provide powerful arguments in favor of the LPV approach for the robust control of nonlinear systems.
4

Mechatronic design under uncertainties

Zhang, Kai 22 October 2013 (has links) (PDF)
Flexible structures are increasingly used in various applications such as aerospace, automotive and so on. Since they are lightly damped and susceptible to vibrations, active vibration control is desirable. In practice, in addition to achieving effective vibration reduction, we have also to consider the required control energy to avoid the energy insufficiency, the control input to avoid control saturation and reduce the effects of measurement noises. On the other hand, as flexible structures have infinite number of resonant modes and only the first few can be employed in the system modeling and the controller design, there always exist neglected high-frequency dynamics, which can induce the spillover instability. Furthermore, the parametric uncertainties on modal parameters can degrade the control performances and even destabilize the closed-loop system. In this context, a quantitative robust control methodology for active vibration control of flexible structure is proposed in this thesis. Phase and gain control polices are first proposed to enforce frequency-dependent phase and gain requirements on the controller, which can be realized by the output feedback H1 control design. The phase and gain control polices based H1 control can make a trade-off among the complete set of control objectives and offer a qualitative robust controller. Especially, the LPV H1 control is used to reduce the required control energy for LPV systems. The generalized polynomial chaos (gPC) framework with finite element analysis is employed for uncertainty quantification. It allows us to investigate the effects of structural property uncertainties on natural frequencies and achieve their probabilistic information. Then, in the presence of parametric and dynamic uncertainties, µ / v analysis and the random algorithm using Monte Carlo Method are used to quantitatively ensure the closed-loop stability and performance robustness properties both in deterministic and probabilistic senses. The proposed quantitative robust control methodology is thus developed by employing various techniques from automatic control and mechanical engineering, thus reducing the gap between them for robust vibration control of flexible structures. Its effectiveness are verified by numerical simulations and experimental validation on LTI and LPV non-collocated piezoelectric cantilever beams.
5

Mechatronic design under uncertainties / Conception mécatronique en présence des incertitudes

Zhang, Kai 22 October 2013 (has links)
Les structures flexibles sont de plus en plus utilisées dans des domaines variés comme l'aérospatiale, l'automobile, etc. Les avantages du contrôle actif des vibrations sont son faible amortissement et sa sensibilité aux vibrations. Dans la réalité, en plus des exigences de réduction effective des vibrations, il faut également prendre en compte la quantité d'énergie nécessaire pour le contrôle, les entrées du contrôle pour éviter la saturation de commande, ainsi que la réduction des effets des bruits de mesure. D'autre part, comme les structures flexibles ont une infinité de modes de résonance et que seuls les premiers modes peuvent être utilisés dans la modélisation du système et dans la conception de contrôleur, les dynamiques négligées en hautes fréquences peuvent induire une instabilité dite "spill over". De plus, les incertitudes sur les paramètres modaux peuvent dégrader les performances de contrôle et même déstabiliser le système en boucle fermée. Dans ce contexte, on propose dans cette thèse une méthodologie quantitative de contrôle actif et robuste des vibrations des structures flexibles. Des stratégies de contrôle de la phase et du gain sont d'abord proposées pour assurer des spécifications dépendant de la fréquence sur la phase et le gain du contrôleur. Ces spécifications peuvent être réalisées par la conception du contrôleur par la méthode Hoo . Le contrôle H00 basé sur ces stratégies permet d'obtenir un compromis entre l'ensemble des objectifs de contrôle et d'offrir un contrôleur robuste qualitatif. En particulier, nous avons utilisé le contrôle LPV Hoo pour réduire l'énergie nécessaire au contrôle du système LPV. Le cadre généralisé du chaos polynomial (gPC) avec analyse par éléments finis, qui permet l'étude des effets des incertitudes de propriétés structurelles sur les fréquences naturelles et qui permet d'obtenir leurs informations probabilistes, est employé pour la quantification des incertitudes. Ensuite, en présence des incertitudes paramétriques et dynamiques, nous avons utilisé l'analyse 11/v et l'algorithme aléatoire en utilisant la méthode de Monte-Carlo pour assurer en même temps la stabilité en boucle fermée et les propriétés de robustesse de la performance à la fois dans le sens déterministe et le sens .probabiliste. La méthodologie de contrôle robuste quantitatif proposée est donc développée en employant des techniques diverses du contrôle automatique et du génie mécanique, et ainsi permet de réduire l'écart entre eux pour le contrôle robuste de la vibration pour des structures flexibles. Son efficacité est vérifiée par des simulations numériques et la validation expérimentale sur des poutres équipées de piézoélectriques non-colocalisés, LTI et LPV. / Flexible structures are increasingly used in various applications such as aerospace, automotive and so on. Since they are lightly damped and susceptible to vibrations, active vibration control is desirable. In practice, in addition to achieving effective vibration reduction, we have also to consider the required control energy to avoid the energy insufficiency, the control input to avoid control saturation and reduce the effects of measurement noises. On the other hand, as flexible structures have infinite number of resonant modes and only the first few can be employed in the system modeling and the controller design, there always exist neglected high-frequency dynamics, which can induce the spillover instability. Furthermore, the parametric uncertainties on modal parameters can degrade the control performances and even destabilize the closed-loop system. In this context, a quantitative robust control methodology for active vibration control of flexible structure is proposed in this thesis. Phase and gain control polices are first proposed to enforce frequency-dependent phase and gain requirements on the controller, which can be realized by the output feedback H1 control design. The phase and gain control polices based H1 control can make a trade-off among the complete set of control objectives and offer a qualitative robust controller. Especially, the LPV H1 control is used to reduce the required control energy for LPV systems. The generalized polynomial chaos (gPC) framework with finite element analysis is employed for uncertainty quantification. It allows us to investigate the effects of structural property uncertainties on natural frequencies and achieve their probabilistic information. Then, in the presence of parametric and dynamic uncertainties, µ / v analysis and the random algorithm using Monte Carlo Method are used to quantitatively ensure the closed-loop stability and performance robustness properties both in deterministic and probabilistic senses. The proposed quantitative robust control methodology is thus developed by employing various techniques from automatic control and mechanical engineering, thus reducing the gap between them for robust vibration control of flexible structures. Its effectiveness are verified by numerical simulations and experimental validation on LTI and LPV non-collocated piezoelectric cantilever beams.
6

Commande robuste de générateurs électrochimiques hybrides / Robust control of hybrid electro-chemical generators

Hernandez Torres, David 25 October 2011 (has links)
L'objectif de cette thèse est la conception, dans un premier temps, des différentes stratégies de commande pour un générateur hybride composé par une pile à combustible et une source auxiliaire de stockage d'énergie. L'outil des Inégalités Linéaires Matricielles (LMI) est utilisé dans la thèse pour la solution du problème de la commande robuste et multi-variables. Dans un premier temps la commande se consacre à la gestion de la partie électrique de la pile. Des stratégies de commande sont proposées pour les convertisseurs élévateurs du bus continu mais aussi pour le contrôle d'un onduleur de tension conçu pour une opération en mode isolé du réseau. La validation d'une partie du contrôle sous un banc d'essai a été réalisée. Dans un deuxième temps, la commande de la partie fluidique de la pile a été traitée. La gestion de la dynamique de l'air en entrée de la pile est assurée par la commande du débit du compresseur. Le sous-système de compression d'air est régulé pour garantir un certain taux d'excès d'oxygène désiré, ce qui permet d'améliorer les performances de la pile. Une introduction au contrôle des systèmes à paramètres variants (LPV) est aussi présentée. Des études de robustesse des contrôleurs proposés ont été effectuées, et ces caractères robustes sont comparés avec plusieurs méthodes de commande classique, prouvant ainsi l'importance des méthodologies de commande robuste et multi-variables. / The objective of this thesis is the design of several control strategies for a hybrid power generator composed by a fuel cell and an auxiliary energy storage source. The Linear Matrix Inequalities (LMI) tools are extensively used in this dissertation as a solution to the mutivariable robust control problem. As a first approach, the control methodology is consecrated to the electrical power management sub-system of the fuel cell. Different strategies are proposed to control the hybrid boost power converter configuration for DC voltage applications. The methodology is extended to AC islanded applications considering the additional control of a voltage inverter. The validation on a dedicated test-bench, of a part of the proposed control strategies, is presented. In a second approach, the control of the air supply system is addressed. The management of the air dynamic entering the fuel cell is assured by the control of the air flow of a compressor. The air supply sub-system is controlled to keep a desired oxygen excess ratio, this allow to improve the fuel cell performance. An introduction to the control of Linear Varying Parameter (LPV) systems is also presented. Robustness analysis studies are performed, these robust properties are contrasted with several classic control strategies, demonstrating the advantage and the importance of multivariable robust methodologies.
7

Control-Oriented Modeling and Output Feedback Control of Hypersonic Air-Breathing Vehicles

Sigthorsson, David O. January 2008 (has links)
No description available.

Page generated in 0.049 seconds