• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechatronic design under uncertainties / Conception mécatronique en présence des incertitudes

Zhang, Kai 22 October 2013 (has links)
Les structures flexibles sont de plus en plus utilisées dans des domaines variés comme l'aérospatiale, l'automobile, etc. Les avantages du contrôle actif des vibrations sont son faible amortissement et sa sensibilité aux vibrations. Dans la réalité, en plus des exigences de réduction effective des vibrations, il faut également prendre en compte la quantité d'énergie nécessaire pour le contrôle, les entrées du contrôle pour éviter la saturation de commande, ainsi que la réduction des effets des bruits de mesure. D'autre part, comme les structures flexibles ont une infinité de modes de résonance et que seuls les premiers modes peuvent être utilisés dans la modélisation du système et dans la conception de contrôleur, les dynamiques négligées en hautes fréquences peuvent induire une instabilité dite "spill over". De plus, les incertitudes sur les paramètres modaux peuvent dégrader les performances de contrôle et même déstabiliser le système en boucle fermée. Dans ce contexte, on propose dans cette thèse une méthodologie quantitative de contrôle actif et robuste des vibrations des structures flexibles. Des stratégies de contrôle de la phase et du gain sont d'abord proposées pour assurer des spécifications dépendant de la fréquence sur la phase et le gain du contrôleur. Ces spécifications peuvent être réalisées par la conception du contrôleur par la méthode Hoo . Le contrôle H00 basé sur ces stratégies permet d'obtenir un compromis entre l'ensemble des objectifs de contrôle et d'offrir un contrôleur robuste qualitatif. En particulier, nous avons utilisé le contrôle LPV Hoo pour réduire l'énergie nécessaire au contrôle du système LPV. Le cadre généralisé du chaos polynomial (gPC) avec analyse par éléments finis, qui permet l'étude des effets des incertitudes de propriétés structurelles sur les fréquences naturelles et qui permet d'obtenir leurs informations probabilistes, est employé pour la quantification des incertitudes. Ensuite, en présence des incertitudes paramétriques et dynamiques, nous avons utilisé l'analyse 11/v et l'algorithme aléatoire en utilisant la méthode de Monte-Carlo pour assurer en même temps la stabilité en boucle fermée et les propriétés de robustesse de la performance à la fois dans le sens déterministe et le sens .probabiliste. La méthodologie de contrôle robuste quantitatif proposée est donc développée en employant des techniques diverses du contrôle automatique et du génie mécanique, et ainsi permet de réduire l'écart entre eux pour le contrôle robuste de la vibration pour des structures flexibles. Son efficacité est vérifiée par des simulations numériques et la validation expérimentale sur des poutres équipées de piézoélectriques non-colocalisés, LTI et LPV. / Flexible structures are increasingly used in various applications such as aerospace, automotive and so on. Since they are lightly damped and susceptible to vibrations, active vibration control is desirable. In practice, in addition to achieving effective vibration reduction, we have also to consider the required control energy to avoid the energy insufficiency, the control input to avoid control saturation and reduce the effects of measurement noises. On the other hand, as flexible structures have infinite number of resonant modes and only the first few can be employed in the system modeling and the controller design, there always exist neglected high-frequency dynamics, which can induce the spillover instability. Furthermore, the parametric uncertainties on modal parameters can degrade the control performances and even destabilize the closed-loop system. In this context, a quantitative robust control methodology for active vibration control of flexible structure is proposed in this thesis. Phase and gain control polices are first proposed to enforce frequency-dependent phase and gain requirements on the controller, which can be realized by the output feedback H1 control design. The phase and gain control polices based H1 control can make a trade-off among the complete set of control objectives and offer a qualitative robust controller. Especially, the LPV H1 control is used to reduce the required control energy for LPV systems. The generalized polynomial chaos (gPC) framework with finite element analysis is employed for uncertainty quantification. It allows us to investigate the effects of structural property uncertainties on natural frequencies and achieve their probabilistic information. Then, in the presence of parametric and dynamic uncertainties, µ / v analysis and the random algorithm using Monte Carlo Method are used to quantitatively ensure the closed-loop stability and performance robustness properties both in deterministic and probabilistic senses. The proposed quantitative robust control methodology is thus developed by employing various techniques from automatic control and mechanical engineering, thus reducing the gap between them for robust vibration control of flexible structures. Its effectiveness are verified by numerical simulations and experimental validation on LTI and LPV non-collocated piezoelectric cantilever beams.
2

Aide à la décision pour la conservation des populations de saumon atlantique (Salmo salar L.) / Decision making for the conservation of atlantic salmon populations (Salmo salar L.)

Brun, Mélanie 16 December 2011 (has links)
La gestion durable des ressources naturelles vivantes est un problème majeur dans un contexte de raréfaction, dû à l'impact de l'homme et à une incertitude omniprésente. Améliorer les outils existant et en développer de nouveaux pour conseiller les gestionnaires sur l'évolution potentielle des ressources naturelles vivantes, selon divers scénarios environnementaux et de gestion, est nécessaire. Cette thèse a pour but de contribuer au développement d'une méthodologie pour l'aide à la décision pour la gestion des ressources naturelles vivantes, tout en prenant en compte les sources d'incertitude majeures. Ce travail est appliqué au cas de la population de saumon atlantique (Salmo salar L.) de la Nivelle (France). Cette population fait l'objet d'un programme de suivi à long terme et cette espèce a été largement étudiée. Cette dernière est menacée mais elle est toujours ciblée par la pêche commerciale et récréative. Elle illustre la dualité entre conservation et exploitation, qui est au coeur de la gestion des ressources naturelles vivantes. Pour gérer une population, il est nécessaire de comprendre sa dynamique et de prédire son évolution sous divers scénarios environnementaux et de gestion. L'approche Bayésienne fournit un cadre cohérent pour quantifier l'incertitude sous ses différentes formes. Les modèles hiérarchiques permettent l'assimilation de sources de données multiples et de faire des inférences et des prédictions sur des grandeurs spatio-temporelles inconnues. Un modèle stochastique d'état Bayésien, i.e. un modèle hiérarchique Bayésien dynamique, est construit pour étudier la dynamique de la population d'intérêt et pour prédire son évolution. La théorie de la décision en univers incertain fournit un cadre pour aider un individu dans ses choix, mais son application reste difficile. En théorie, une fonction d'utilité qui dépend des conséquences des alternatives de gestion reflète les préférences d'un individu unique impliqué dans un problème décisionnel. En pratique, sa construction est malaisée. Premièrement, il estdifficile de définir une valeur pour chaque conséquence. Deuxièmement, il y a généralement plus d'un individu impliqué dans le problème décisionnel. Par conséquent, on obtient une classe de fonctions d'utilité. De par les différents intérêts, souvent conflictuels, que les gestionnaires ont à prendre en compte, la fonction d'utilité est multi variée. Dans cette thèse, une classe de fonctions d'utilité bi-variées est construite. Elle prend en compte l'incertitude concernant la fonction, les variations de préférence entre les acteurs et la dualité d'intérêts exploitation vs conservation. Ensuite, une analyse de la robustesse est réalisée pour étudier si la décision optimale, i.e. l'utilité espérée maximale, varie lorsque la fonction d'utilité varie.La méthodologie développée dans cette thèse s'est avérée possible et fructueuse. Elle fournit un cadre cohérent pour organiser les interactions entre scientifiques, acteurs et gestionnaires pour atteindre une compréhension commune des problèmes de décision dans la gestion des ressources naturelles vivantes. En reconnaissant explicitement la diversité des acteurs, elle permet d'identifier des conflits potentiels et de guider les gestionnaires vers des compromis acceptables. Cependant, elle demande un haut niveau de formation et d'expertise en modélisation et en calcul. Elle implique également un temps d'analyse important. Comment rendre ces exigences compatibles avec le niveau actuel d'expertise et les agendas à court terme des structures de gestion est un challenge principal pour le futur. / The sustainable management of natural living resources is a major issue in a context of increasing scarcity due to human impact and of pervasive uncertainty. Improving existing tools and developing new ones to advise decision makers on the potential evolution of natural living resources, according to various management and environmental scenarios, is requested. This PhD aims at contributing to the development of a methodology for decision making for natural living resources management, while taking into account major sources of uncertainty. This is achieved through the study case of the Atlantic salmon (Salmo salar L.) population ofthe Nivelle River (France). This population is subjected to a long term monitoring program and the species has been extensively studied. Atlantic salmon is a threatened species but still targeted by commercial and recreational fisheries. It illustrates the duality between conservation and exploitation which is at the heart of natural living resource management. To manage a population, it is necessary to understand its dynamics and to predict its evolution under various management and environmental scenarios. The Bayesian approach provides a coherent framework to quantify uncertainty in its different forms. Hierarchical models allow the assimilation of multiple sources of data and to make spatio-temporal inferences and predictions. A Bayesian state space model, i.e. a Bayesian dynamic hierarchical model, is constructed to study the dynamics of the population of interest and topredict its evolution. The decision theory under uncertainty provides a framework to help an individual in its choices, but its application still raises difficulties. In theory, a utility function depending on the consequences of alternative actions reflects the preferences of a single individual involved in a decision problem. In practice, its construction is challenging. Firstly, it is difficult to assign a value for each consequence. Secondly, there is usually more than one individual involved in the decision problem. Consequently, we obtain a set of utility functions. Due to the various and often conflicting interests the decision maker has to take into account, the utility function is multivariate. In this PhD, a set of bivariate utility functions is constructed. It accounts for the uncertainty about the function, the variation of preferences among stakeholders and the dual interests of exploitation vs conservation. Next, a robustness analysis is performed to study if the optimal decision, i.e. associated to the maximum expected utility, varies when the utility function varies. The methodology developed in this PhD proved practicable and fruitful. It provides a coherent framework for organizing the interactions between scientists, stakeholders and decision makers for reaching a common understanding of decision problems in the management of natural living resources. By acknowledging explicitly the diversity among stakeholders, it allows to identify potential conflict and it helps guiding decision makers towards acceptable trade-off actions. However, it requires a high level of training and expertise in modelling and computation. It involves also thoughtful and time consuming analyses. How to render these requirements compatible with the current level of expertise and the short term agendas of management bodies is a main challenge for the near future.

Page generated in 0.0919 seconds