Return to search

Cluster mass scaling relations through weak lensing measurements / Relation d’échelle d'amas de galaxies à partir d'observations de lentilles gravitationnelles

Les amas de galaxies sont des outils cosmologiques et astrophysiques essentiels, car ce sont les objets les plus grands et les plus massifs gravitationnellement liées dans l'Univers. L'étude de leur fonction de masse, de leur fonction de corrélation et des relations d'échelle entre leur masse et différentes observables nous permettent de tester les prévisions des modèles cosmologique et les scenarii de formation des structures. Ils sont aussi d'intéressants laboratoires pour l'étude de la formation et de l'évolution des galaxies, et de leur interactions avec le milieu qui les entourent, dans d’environnements denses. Pour y parvenir, estimer précisément leur masse revêt une importance fondamentale. J’ai étudié la précision de la richesse optique calculée par l’algorithme de détection d’amas RedGOLD (Licitra et al. 2016) en tant que mass proxy, en utilisant des mesures de lentilles gravitationnelles (weak lensing) et des observations en rayon X. J’ai mesuré les masses cumulées d’un échantillon de 1323 amas de galaxies dans le CFHTLS et NGVS à 0.2<z<0.5, dans l’intervalle de richesse 10-70. J'ai testé différents modèles prenant en compte les erreurs sur la position du centre de l'amas, les effets de lentille non faible (non-weak shear), le "two-halo term", la contribution de la galaxie centrale brillante et la dispersion intrinsèque de la relation masse-richesse. J'ai montré que la correction de la position du centre est nécessaire pour éviter un biais dans la mesure de la masse, alors que l'ajout de la galaxie centrale n'affecte pas les résultats. J'ai calculer les coefficients de la relation masse-richesse et ceux de la relation d'échelle entre masses issues du weak lensing et celle estimées à partir d'observations dans les rayons X. Mes résultats sont en accord avec les simulations et les précédents travaux publiés. / Galaxy clusters are essential cosmological and astrophysical tools, since they represent the largest and most massive gravitationally bound structures in the Universe. Through the study of their mass function, of their correlation function, and of the scaling relations between their mass and different observables, we can probe the predictions of cosmological models and structure formation scenarios. They are also interesting laboratories that allow us to study galaxy formation and evolution, and their interactions with the intra-cluster medium, in dense environments. For all of these goals, an accurate estimate of cluster masses is of fundamental importance. I studied the accuracy of the optical richness obtained by the RedGOLD cluster detection algorithm (Licitra et al. 2016) as a mass proxy, using weak lensing and X-ray mass measurements. I measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the CFHTLS W1 and in the NGVS at 0.2<z<0.5, in the optical richness range 10-70. I tested different weak lensing mass models that account for miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and the intrinsic scatter in the mass-richness relation. I found that the miscentering correction is necessary to avoid a bias in the measured halo masses, while the inclusion of the BCG mass does not affect the results. I calculated the coefficients of the mass-richness relation, and of the scaling relations between the lensing mass and X-ray mass proxies. My results are consistent with simulations and previous works in the literature.

Identiferoai:union.ndltd.org:theses.fr/2017USPCC232
Date11 September 2017
CreatorsParroni, Carolina
ContributorsSorbonne Paris Cité, Mei, Simona
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Collection, Image, StillImage

Page generated in 0.0447 seconds