Return to search

Réalisation de Hodge du polylogarithme d'un schéma abélien et dégénérescence des classes d'Eisenstein des familles modulaires de Hilbert-Blumenthal.

La réalisation de Hodge du polylogarithme d'un schéma abélien complexe de dimension g est une (2g-1)-extension de modules de Hodge. Lorsque le schéma abélien est principalement polarisé, on en donne une description au niveau topologique. Pour cela, on utilise des courants de type "courants de Green" introduits par Levin. On applique alors ce résultat aux familles modulaires de Hilbert-Blumenthal pour montrer que certaines classes d'Eisenstein (construites à partir du polylogarithme et d'une section de torsion) dégénèrent, en l'infini, en une valeur spéciale de fonction L du corps de nombres totalement réel sous-jacent. On en déduit deux autres résultats : une version partielle du théorème de Klingen-Siegel et un résultat de non nullité pour certaines de ces classes d'Eisenstein. Ainsi, on montre que pour tout entier g plus grand que 2, il existe un schéma abélien complexe de dimension g tel que certaines de ses classes d'Eisenstein soient non nulles.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00132405
Date30 May 2006
CreatorsBlottière, David
PublisherUniversité Paris-Nord - Paris XIII
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0016 seconds