Return to search

Earth Observation for the Assessment of Long-Term Snow Dynamics in European Mountains - Analysing 35-Year Snowline Dynamics in Europe Based on High Resolution Earth Observation Data between 1984 and 2018 / Erdbeobachtung für die Beurteilung von Langzeit Schneedynamiken in Europäischen Gebirgen - Die Analyse von Scheegrenzendynamiken über 35 Jahre in Europa basierend auf hochauflösenden Erdbeobachtungsdaten zwischen 1984 und 2018

Worldwide, cold regions are undergoing significant alterations due to climate change. Snow, the most widely distributed cold region component, is highly sensitive to climate change. At the same time, snow itself profoundly impacts the Earth’s energy budget, biodiversity, and natural hazards, as well as hydropower management, freshwater management, and winter tourism/sports. Large parts of the cold regions in Europe are mountain areas, which are densely populated because of the various ecosystem services and socioeconomic well-being in mountains. At present, severe consequences caused by climate change have been observed in European mountains and their surrounding areas. Yet, large knowledge gaps hinder the development of effective regional and local adaptation strategies. Long-term and evidence-based regional studies are urgently needed to enhance the comprehension of regional responses to climate change.

Earth Observation (EO) provides long-term consistent records of the Earth’s surface. It is a great alternative and/or supplement to conventional in-situ measurements which are usually time-consuming, cost-intensive and logistically demanding, particularly for the poor accessibility of cold regions. With the assistance of EO, land surface dynamics in cold regions can be observed in an objective, repeated, synoptic and consistent way. Thanks to free and open data policies, long-term archives such as Landsat Archive and Sentinel Archive can be accessed free-of-charge. The high- to medium-resolution remote sensing imagery from these freely accessible archives gives EO-based time series datasets the capability to depict snow dynamics in European mountains from the 1980s to the present. In order to compile such a dataset, it is necessary to investigate the spatiotemporal availability of EO data, and develop a spatiotemporally transferable framework from which one can investigate snow dynamics.

Among the available EO image archives, the Landsat Archive has the longest uninterrupted records of the Earth’s land surface. Furthermore, its 30 m spatial resolution fulfils the requirements for snow monitoring in complex terrains. Landsat data can yield a time series of snow dynamics in mountainous areas from 1984 to the present. However, severe Landsat data gaps have occurred across certain regions of Europe. Moreover, the Landsat Level 1 Precision and Terrain (L1TP) data is scarcer (up to 50% less) in high-latitude mountainous areas than in low-latitude mountainous areas. Given the abovementioned facts, the Regional Snowline Elevation (RSE) is selected to characterize the snow dynamics in mountainous areas, as it can handle cloud obstructions in the optical images. In this thesis, I present a five-step framework to derive and densify RSE time series in European mountains, i.e. (1) pre-processing, (2) snow detection, (3) RSE retrieval, (4) time series densification, and (5) Regional Snowline Retreat Curve (RSRC) production.

The results of the intra-annual RSE variations show a uniquely high variation in the beginning of the ablation seasons in the Alpine catchment Tagliamento, mainly toward higher elevation. As for inter-annual variations of RSE, median RSE increases in all selected catchments, with an average speed of around 4.66 m ∙ a−1 (median) and 5.87 m ∙ a−1 (at the beginning of the ablation season). The fastest significant retreat is observed in the catchment Drac (10.66 m ∙ a−1, at the beginning of the ablation season), and the slowest significant retreat is observed in the catchment Uzh (1.74 m ∙ a−1, at the beginning of the ablation season). The increase of RSEs at the beginning of the ablation season is faster than the median RSEs, whose average difference is nearly 1.21 m ∙ a−1, particularly in the catchment Drac (3.72 m ∙ a−1). The results of the RSRCs show a significant rise in RSEs at the beginning of the ablation season, except for the Alpine catchment Alpenrhein and Var, and the Pyrenean catchment Ariege. It indicates that 11.8 and 3.97 degrees Celsius less per year are needed for the regional snowlines to reach the middle point of the RSRC in the Tagliamento and Tysa, respectively. The variation of air temperature is regarded as an example of a potential climate driver in this thesis. The retrieved monthly mean RSEs are highly correlated (mean correlation coefficient "R" ̅ = 0.7) with the monthly temperature anomalies, which are more significant in months with extremely low/high temperature. Another case study that investigates the correlation between river discharges and RSEs is carried out to demonstrate the potential consequences of the derived snowline dynamics. The correlation analysis shows a good correlation between river discharges and RSEs (correlation coefficient, R=0.52).

In this thesis, the developed framework signifies a better understanding of the snow dynamics in mountain areas, as well as their potential triggers and consequences. Nonetheless, an urgent need persists for: (1) validation data to assess long-term snow-related observations based on high-resolution EO data; (2) further studies to reveal interactions between snow and its ambient environment; and (3) regional and local adaptation-strategies coping with climate change. Further studies exploring the above-mentioned research gaps are urgently needed in the future. / Weltweit erleben kalte Regionen signifikante Veränderungen durch den Klimawandel. In kalten Regionen ist der Schnee die am weitesten verbreitete Komponente, welche sehr sensibel auf Klimaänderungen reagiert. Zugleich beeinflusst der Schnee selbst das Energiebudget der Erde, die Biodiversität, Naturgefahren sowie Wasserenergiegewinnung, Süßwassergewinnung, Wintertourismus und Wintersport. Große Teile der kalten Regionen in Europa sind Gebirgsregionen. Diese sind dicht besiedelt, da Gebirgsregionen verschiedenste Ökosystemservices bereitstellen und sozioökonomisches Wohlbefinden ermöglichen. Heute kann man schwerwiegende Konsequenzen in Europäischen Gebirgen und deren angrenzenden Gebieten wahrnehmen. Dennoch verhindern große Wissenslücken die Entwicklung effektiver und regionaler/lokaler Anpassungsstrategien. Um regionaler Auswirkungen durch den Klimawandel besser verstehen zu können, ist es enorm wichtig Langzeitstudien und beweisorientierte regionale Studien durchzuführen.
Erdbeobachtung (EO) bietet durchgängige Langzeitaufzeichnungen der Erdoberfläche. Dies ist eine großartige Alternative und/oder Ergänzung zu konventionellen in-situ Messungen, welche meist zeitaufwändig, teuer und logistisch herausfordernd sind – vor allem in kalten Regionen, die schwer zugänglich sind. Mit der Hilfe von Erdbeobachtung können Oberflächendynamiken objektiv, wiederholt, synoptisch und kontinuierlich aufgenommen werden. Dank freier und offener Datenpolitik, Langzeitmissionen wie Landsat und Sentinel sind diese Daten inzwischen ohne zusätzliche Kosten zugänglich. Durch die oben genannten Rahmenbedingungen, besteht die Möglichkeit aus hoch bis mittel aufgelöste Satellitenbilder erdbeobachtungsbasierte Zeitreihen zu erstellen, die die Schneedynamiken in Europäischen Gebirgen abbilden. Um dieses Ziel zu erreichen, muss die räumliche und zeitliche Verfügbarkeit von Erdbeobachtungsdaten überprüft werden und ein Rahmenwerk geschaffen werden (übertragbar in Zeit und Raum), um Schneedynamiken aus Erdbeobachtungsdaten großflächig ableiten zu können.
Unter den verfügbaren Erdbeobachtungsarchiven bietet das Landsat Archiv die längsten und kontinuierlichsten Aufzeichnungen der Landoberfläche. Zudem erfüllt die räumliche Auflösung von 30 m die Anforderungen, Schnee in komplexem Terrain zu monitoren. Basierend auf Landsat L1TP Daten (z.B. terrainkorrigiert) ist es möglich, Zeitreihen von Schneedynamiken in Gebirgsregionen zwischen 1984 und 1991/1999 zu erstellen. Des Weiteren ist Landsat L1TP in hohen Breitengraden seltener verfügbar (bis zu 50 % weniger) als in Gebirgsregionen der gemäßigten Breiten. Basierend auf den oben genannten Fakten wurde die Regionale Höhe der Schneefallgrenze (RSE) ausgewählt um Schneedynamiken in Gebirgsregionen zu charakterisieren, da diese Wolken in optischen Szenen bewältigen kann. In dieser Arbeit wurde ein fünf-Stufen Rahmenwerk geschaffen, um RSE-Zeitserien in Europäischen Gebirgen abzuleiten und zu verdichten. Die Prozessierungskette besteht aus (1) Vorprozessierung, (2) Schneedetektion, (3) RSE-Ableitung, (4) Zeitreihenverdichtung und (5) Erstellung einer regionalen Schneegrenzen-Rückgangsfunktion (RSRC).
Die Ergebnisse der intra-annuellen RSE Variationen zeigen eine einzigartige hohe Variation im Beginn der Abschmelzsaison im alpinen Einzugsgebiet Tagliamento, meist in höheren Gebieten. Wie für die inter-annuellen Variationen des RSE, steigt auch der Median des RSE in allen ausgewählten Einzugsgebieten mit einer durchschnittlichen Geschwindigkeit von 4.66 m ∙ a−1 (median) und 5.87 m ∙ a−1 (zum Beginn der Schmelze). Der schnellste signifikante Rückgang kann im Einzugsgebiet Drac (10.66 m ∙ a−1, Beginn der Schmelze) beobachtet werden, der langsamste Rückgang im Einzugsgebiet Uzh (1.74 m ∙ a−1, Beginn der Schmelze). Der Anstieg des RSE zu Beginn der Schmelzsaison ist schneller als der Median des RSE, dessen mittlere Differenz 1.21 m ∙ a−1 beträgt. Insbesondere für das Drac Einzugsgebiet (3.72 m ∙ a−1). Die Ergebnisse des RSRC zeigen signifikante Anstiege des RSE zu Beginn des Schmelzsaison, ausgenommen davon sind die alpinen Einzugsgebiete Alpenrhein und Var und das Einzugsgebiet Ariege in den Pyrenäen. Dies lässt darauf zurückschließen, dass 11.8 °C und 3.97 °C Grad weniger pro Jahr nötig sind für Tagliamento und Tysa, damit die regionalen Schneegrenzen den Mittelpunkt des RSRC erreicht. Zudem wird die Variation der Lufttemperatur als beispielhafter Treiber des Klimas in dieser Thesis gesehen. Die monatlich abgeleiteten mittleren RSE korrelieren stark (mittlerer korrelations Coeffizient R ̅ = 0.7) mit monatlichen Temperaturanomalien. In Monaten mit extrem hohen/tiefen Temperaturen ist die Korrelation am stärksten. Ein anderes Fallbeispiel untersucht die Korrelation zwischen Abfluss in Flüssen und RSE, um die potenziellen Konsequenzen der abgeleiteten Schneefallgrenzendynamiken zu ermitteln. Die Korrelationsanalyse weist eine gute Korrelation auf (R=0.52).
Das in dieser Arbeit entwickelte Rahmenwerk ist nur ein Beginn, um das Wissen über Schneedynamiken in Gebirgsregionen zu verbessern und potentiell auslösende Faktoren und Konsequenzen zu verstehen. Dennoch wird folgendes dringend benötigt: (1) Validierungsdaten für schneebasierte Langzeitbeobachtungen aus hochaufgelösten Erdbeobachtungsdaten; (2) weitere Studien zu Interaktionen zwischen Schnee und der umgebende Umwelt; und (3) regionale und lokale Anpassungsstrategien, um Auswirkungen des Klimawandels zu meistern. Weitere Studien in den oben genannten Punkten werden in der Zukunft stark frequentiert sein, damit Wissens- und Forschungslücken geschlossen werden können.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:20044
Date January 2020
CreatorsHu, Zhongyang
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageUnknown
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0237 seconds