Return to search

A counterexample concerning nontangential convergence for the solution to the time-dependent Schrödinger equation

<p>Abstract: Considering the Schrödinger equation $\Delta_x u = i\partial{u}/\partial{t}$, we have a solution $u$ on the form $$u(x, t)= (2\pi)^{-n} \int_{\RR} {e^{i x\cdot \xi}e^{it|\xi|^2}\widehat{f}(\xi)}\, d \xi, x \in \RR, t \in \mathbf{R}$$ where $f$ belongs to the Sobolev space. It was shown by Sjögren and Sjölin, that assuming $\gamma : \mathbf{R}_+ \rightarrow \mathbf{R}_+ $ being a strictly increasing function, with $\gamma(0) = 0$ and $u$ and $f$ as above, there exists an $f \in H^{n/2} (\RR)$ such that $u$ is continuous in $\{ (x, t); t>0 \}$ and $$\limsup_{(y,t)\rightarrow (x,0),|y-x|<\gamma (t), t>0} |u(y,t)|= + \infty$$ for all $x \in \RR$. This theorem was proved by choosing $$\widehat{f}(\xi )=\widehat{f_a}(\xi )= | \xi | ^{-n} (\log | \xi |)^{-3/4} \sum_{j=1}^{\infty} \chi _j(\xi)e^{- i( x_{n_j} \cdot \xi + t_j | \xi | ^a)}, \, a=2,$$ where $\chi_j$ is the characteristic function of shells $S_j$ with the inner radius rapidly increasing with respect to $j$. The purpose of this essay is to explain the proof given by Sjögren and Sjölin, by first showing that the theorem is true for $\gamma (t)=t$, and to investigate the result when we use $$S^a f_a (x, t)= (2 \pi)^{-n}\int_{\RR} {e^{i x\cdot \xi}e^{it |\xi|^a}\widehat{f_a}(\xi)}\, d \xi$$ instead of $u$.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:vxu-1082
Date January 2007
CreatorsJohansson, Karoline
PublisherVäxjö University, School of Mathematics and Systems Engineering
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text

Page generated in 0.0018 seconds