Return to search

Desenvolvimento de técnica para recomendar atividades em workflows científicos: uma abordagem baseada em ontologias / Development of a strategy to scientific workflow activities recommendation: An ontology-based approach

O número de atividades disponibilizadas pelos sistemas gerenciadores de workflows científicos é grande, o que exige dos cientistas conhecerem muitas delas para aproveitar a capacidade de reutilização desses sistemas. Para minimizar este problema, a literatura apresenta algumas técnicas para recomendar atividades durante a construção de workflows científicos. Este projeto especificou e desenvolveu um sistema de recomendação de atividades híbrido, considerando informação sobre frequência, entrada e saídas das atividades, e anotações ontológicas para recomendar. Além disso, neste projeto é apresentada uma modelagem da recomendação de atividades como um problema de classificação e regressão, usando para isso cinco classificadores; cinco regressores; um classificador SVM composto, o qual usa o resultado dos outros classificadores e regressores para recomendar; e um ensemble de classificadores Rotation Forest. A técnica proposta foi comparada com as outras técnicas da literatura e com os classificadores e regressores, por meio da validação cruzada em 10 subconjuntos, apresentando como resultado uma recomendação mais precisa, com medida MRR ao menos 70% maior do que as obtidas pelas outras técnicas / The number of activities provided by scientific workflow management systems is large, which requires scientists to know many of them to take advantage of the reusability of these systems. To minimize this problem, the literature presents some techniques to recommend activities during the scientific workflow construction. This project specified and developed a hybrid activity recommendation system considering information on frequency, input and outputs of activities and ontological annotations. Additionally, this project presents a modeling of activities recommendation as a classification problem, tested using 5 classifiers; 5 regressors; a SVM classifier, which uses the results of other classifiers and regressors to recommend; and Rotation Forest , an ensemble of classifiers. The proposed technique was compared to other related techniques and to classifiers and regressors, using 10-fold-cross-validation, achieving a MRR at least 70% greater than those obtained by other techniques

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-19042016-140611
Date16 March 2016
CreatorsKhouri, Adilson Lopes
ContributorsDigiampietri, Luciano Antonio
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0138 seconds