Return to search

Ecological interactions influencing Avicennia germinans propagule dispersal and seedling establishment at mangrove-saltmarsh boundaries

Mangroves and saltmarshes are ecologically important coastal ecosystems; unfortunately, these low-lying coastal ecosystems are vulnerable to global climate change. As sea-levels rise, mangroves are expected to shift their distribution landward towards higher elevation sites that are occupied by other plants, including saltmarsh taxa. Therefore, mangrove recruits at the leading edge of expansion may interact with diverse assemblages of saltmarsh plants, and these interactions could influence the success of mangrove encroachment into higher tidal-elevation areas. The purpose of the research presented here was to investigate empirically the ecological interactions that may influence the recruitment of the black mangrove, Avicennia germinans, into saltmarsh habitats. Saltmarsh plants frequently occurred at the landward boundary of mangrove forests at two sites selected for field studies along the west coast of Florida: Cannon Island and Upper Tampa Bay Park.
On Cannon Island, two different field tests investigated mangrove propagule entrapment and dispersal within saltmarsh vegetation. In the first experiment, the entrapment of mangrove propagules within saltmarsh plants, exhibiting different growth forms, was examined during seasonal high tide events. Natural polyculture plots retained a mean (±;SE) 59.3% (±;11.0) of emplaced propagules. Monocultures varied in their propagule retention capacities with plots of S. virginicus retaining on average 65.7% (±;11.5) of transplanted propagules compared to 7.2% (±;1.8) by B. maritima and 5.0% (±;1.9) by S. portulacastrum. Monocultures of the salt marsh grass, Sporobolus virginicus, and natural saltmarsh polycultures containing S. virginicus retained significantly more propagules than either of two succulent plants (i.e., Batis maritima and Sesuvium portulacastrum). Using digital images, saltmarsh plant structure was quantified; the number of entrapped mangrove propagules displayed a significant and positive correlation (r2 = 0.6253, p = 0.00001) with the amount of structure provided by saltmarsh plants. Therefore, the first field study identified structural and functional differences between saltmarsh plants.
A second field study employed marked propagules in order to further examine the dispersal patterns of propagules at saltmarsh boundaries comprised of plants with different growth forms (i.e., grass vs. succulent) during seasonal high tides. Saltmarsh plant boundaries erected by taxa with distinct growth forms differentially influenced the proportion of propagules that dispersed seaward and the distance propagules moved seaward. In fact, nearly twice as many propagules dispersed seaward at boundaries erected by succulent plants compared to boundaries composed of grass. The results of this field study support my previous findings that propagule dispersal is comparatively lower in saltmarsh grass than in succulent saltmarsh plants. The findings from these two field studies suggest that the permeability of boundaries formed by saltmarsh plants may modulate landward dispersal of A. germinans propagules.
The final field study was conducted at Upper Tampa Bay Park, where a second species of saltmarsh grass, Monanthochloe littoralis, co-occurred with the grass, S. virginicus, and succulent saltmarsh plants to form a mosaic landscape of saltmarsh plant patches. Patches were weeded to create 3 saltmarsh treatments: 1) M. littoralis monoculture; 2) S. virginicus monoculture; and 3) polycultures containing both grasses and at least one other saltmarsh taxa. Propagules of A. germinans were emplaced into saltmarsh patches and followed for 11 weeks. On the last sampling date, the greatest number of A. germinans (n = 51) had successfully established as seedlings within the M. littoralis monoculture plots. In contrast, only 20 (22% of the propagules initially emplaced) A. germinans seedlings established in S. virginicus monoculture plots. These findings suggest that among grass taxa, species identity influences mangrove establishment success, which builds upon our previous findings that demonstrated that saltmarsh growth form (i.e., grass vs. succulent) influenced mangrove propagule dispersal.
Combined the findings from these field studies indicate that interactions among the early life history stages of black mangroves and neighboring plants influence mangrove recruitment. Specifically, these field studies provide empirical evidence that the species composition of saltmarsh plants influences mangrove propagule dispersal and seedling establishment. The work presented here has implications for understanding the suite of ecological interactions that may influence mangrove encroachment into saltmarsh habitats at higher tidal elevations as sea-levels rise.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-5759
Date01 January 2013
CreatorsPeterson, Jennifer Mcclain
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0022 seconds