This PhD is dedicated to the development of an advanced numerical model for simulating interactions between free surface waves of arbitrary steepness and rigid bodies in high amplitude motions. Based on potential theory, it solves the coupled dynamics of waves and structure with the implicit method by Van Daalen (1993), also named the acceleration potential method by Tanizawa (1995). The precision of this two-dimensional model is tested on a wide range of applications involving the forced motion or free motion of a submerged horizontal cylinder of circular cross-section : diffraction by a fixed cylinder, radiation by a cylinder in specified high amplitude motions, wave absorption by the Bristol cylinder. In each of these applications, numerical results are compared to experimental data or analytical solutions based on the linear wave theory, with a good agreement especially for small amplitude motions of the cylinder and small wave steepnesses. The irregular wave generation by a paddle and the possibility to add an extra circular cylinder are integrated in the model and illustrated on practical applications with simple wave energy converters. The model is finally extended to three dimensions, with preliminary results for a sphere in large amplitude heaving oscillations
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00680537 |
Date | 19 December 2011 |
Creators | Guerber, Etienne |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0019 seconds