Return to search

Techno-economic Pricing model for Carbon Neutral Fuels as Seasonal Energy Storage

Green hydrogen produced through electrolysis of excess renewable energy is a promising seasonal energy storage solution with the potential to decarbonize the energy sector. However, it has physical properties that make it difficult to store and transport on a large scale for grid scale storage applications. An alternative to storing excess renewable energy in hydrogen is converting the hydrogen to synthetic fuel that has an industrially mature production process and an established transportation, storage and distribution infrastructure. This study aims to conduct a feasibility analysis to compare the cost and compatibility of green hydrogen, ammonia, methane and methanol as seasonal energy storage. The production of each fuel and the barriers to their commercialization as energy vectors is discussed. The hydrogen storage technologies holding the most potential are identified as salt cavern and lined rock cavern storage however type I-IV pressure vessel storage is also included in the analysis due to its prevalence within the industry The outcome of the study is a conceptual model calculating the levelized cost of storage of each fuel considering the storage system size, compression energy required and annualized CAPEX and OPEX of compression and storage. Three cases are developed to analyse the storage system, A- seasonal discharging, B-weekly discharging and C- daily discharging. The results identify that the most feasible seasonal storage option for hydrogen is utilizing a salt cavern. If building a salt cavern is infeasible due to geographical constraints, a lined rock cavern is more cost-effective as compared to utilizing pressure vessel storage. For shorter storage periods or smaller scale applications it is more beneficial to employ low pressure (200-300 bar) pressure vessel storage since geological storage becomes expensive as compared to the seasonal case. Low pressure storage is better suited for smaller applications as compression costs account for a significant share of the total annual cost of each storage system in the weekly and daily cases. The most suitable hydrogen storage option is highly dependent on the end use application. Overall, methanol storage provided the lowest levelized cost of storage in all scenarios. / Grönt väte som produceras genom elektrolys av överskott av förnybar energi är en lovande säsongsbaserad energilagringslösning med potential att koldioxidutlösa energisektorn. Det har dock fysiska egenskaper som gör det svårt att lagra och transportera i stor skala för lagringsapplikationer i nätskala. Ett alternativ till att lagra överskott av förnybar energi i väte är att omvandla vätgas till syntetiskt bränsle som har en industriellt mogen produktionsprocess och en etablerad transport-, lagrings- och distributionsinfrastruktur. Denna studie syftar till att genomföra en genomförbarhetsanalys för att jämföra kostnaden och kompatibiliteten för grönt väte, ammoniak, metan och metanol som säsongsbetonad energilagring. Produktionen av varje bränsle och hindren för deras kommersialisering som energivektorer diskuteras. De tekniker för lagring av väte som har störst potential identifieras som lagring av saltrum och fodrad bergrum, men lagring av tryckkärl av typ I-IV ingår också i analysen på grund av dess förekomst inom industrin Resultatet av studien är en konceptuell modell som beräknar den utjämnade kostnaden för lagring av varje bränsle med hänsyn till lagringssystemets storlek, kompressionsenergi som krävs och årlig CAPEX och OPEX för kompression och lagring. Tre fall är utvecklade för att analysera lagringssystemet, A-säsongsurladdning, B-veckotursning och C-daglig urladdning. Resultaten visar att det mest möjliga säsongsbetonade lagringsalternativet för väte är att använda en saltgrotta. Om det är omöjligt att bygga en salthåla på grund av geografiska begränsningar, är en fodrad berghåla mer kostnadseffektiv jämfört med att använda tryckkärlslagring. För kortare lagringsperioder eller tillämpningar i mindre skala är det mer fördelaktigt att använda lågtrycks (200-300 bar) tryckkärllagring eftersom geologisk lagring blir dyr jämfört med säsongsfallet. Lågtryckslagring är bättre lämpad för mindre applikationer eftersom kompressionskostnaderna står för en betydande del av den totala årliga kostnaden för varje lagringssystem i vecko- och dagliga fall. Det mest lämpliga vätgaslagringsalternativet är starkt beroende av slutanvändningsapplikationen. Sammantaget gav metanollagring den lägsta utjämnade kostnaden för lagring i alla scenarier.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-308629
Date January 2021
CreatorsSaraf, Ananya
PublisherKTH, Skolan för industriell teknik och management (ITM)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:2

Page generated in 0.0027 seconds