Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-30T11:12:00Z
No. of bitstreams: 1
arquivo total.pdf: 1989591 bytes, checksum: c1b3f2740144367fd7ef458d0603ba20 (MD5) / Made available in DSpace on 2016-03-30T11:12:00Z (GMT). No. of bitstreams: 1
arquivo total.pdf: 1989591 bytes, checksum: c1b3f2740144367fd7ef458d0603ba20 (MD5)
Previous issue date: 2015-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In several scienti c character problems, it is common to come across us with the
need to obtain an approximate solution to nd roots of functions. At this point,
this paper aims to conduct a study about some methods used to obtain an approximate
solution of the functions of roots. The survey was made by means of a
literature review, focusing on Numerical Methods Bisection, False Position, Fixed
Point, Newton-Raphson and Secant. In order to illustrate the operation and application
of these methods, numerical test problems taken from the literature were
performed by implementing these. For each test performed were analyzed parameters
that in uence each method and the convergence situation for the approximate
solution of the analyzed problems. Although these methods do not always make
available exact roots, they can be calculated with the precision that the problem
needs. At this point, it is evident the importance of studying methods for nding
such equations roots. Thus, the work is justi ed on the need to discuss the problems
facing the nding roots of polynomial functions in the literature. In addition, this
paper describes a comparison between the methods studied by applying mathematical
problems. All this research material becomes adept and e ective for students
and professionals from all areas that make use of them, or perhaps wish to extract
it for enrichment of several sources of study. / Em diversos problemas de caráter cientí co, é comum depararmo-nos com a necessidade
de obter uma solução aproximada para encontrar raízes de funções. Nesse
ponto, este trabalho objetiva realizar um estudo acerca de alguns métodos utilizados
para a obtenção de uma solução aproximada das raízes de funções. A pesquisa realizada
deu-se por meio de uma revisão bibliográ ca, enfocando os Métodos Numéricos
da Bisseção, Falsa Posição, Ponto Fixo, Newton-Raphson, Secante e Muller. Com
o intuito de ilustrar o funcionamento e aplicação desses métodos, foram realizados
testes numéricos de problemas extraídos da literatura por meio da implementação
destes. Para cada teste realizado foram analisados os parâmetros que in uenciam
cada método e a situação de convergência para a solução aproximada dos problemas
analisados. Embora esses métodos, nem sempre, disponibilizem raízes exatas, estas
poderão ser calculadas com a precisão que o problema necessite. Nesse ponto, ca
evidente a importância de estudar métodos para encontrar tais raízes de equações.
Diante disso, o trabalho se justi ca na necessidade de se discutir os problemas voltados
a encontrar raízes de funções polinomiais, existentes na literatura. Além disso,
o presente trabalho descreve um comparativo entre os métodos estudados mediante
aplicação de problemas matemáticos. Todo esse material de pesquisa torna-se hábil
e e caz para os estudantes e pro ssionais de todas as áreas que dele faça uso, ou,
porventura, pretendam extraí-lo para enriquecimento de fontes diversas de estudo.
Identifer | oai:union.ndltd.org:IBICT/oai:tede.biblioteca.ufpb.br:tede/8060 |
Date | 24 February 2015 |
Creators | Nascimento, Demilson Antonio do |
Contributors | Bocker Neto, Carlos |
Publisher | Universidade Federal da Paraíba, Mestrado Profissional em Matemática, UFPB, Brasil, Matemática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFPB, instname:Universidade Federal da Paraíba, instacron:UFPB |
Rights | info:eu-repo/semantics/openAccess |
Relation | -7971561403159605022, 600, 600, 600, 600, -78633126427147401, 8398970785179857790, 2075167498588264571 |
Page generated in 0.0078 seconds