Return to search

3D follicle segmentation in ultrasound image volumes of ex-situ bovine ovaries

Conventional ultrasonographic examination of the bovine ovary is based on a sequence of two-dimensional (2D) cross-section images. Day-to-day estimation of the number, size, shape and position of the ovarian follicles is one of the most important aspects of ovarian research. Computer-assisted follicle segmentation of ovarian volume can relieve physicians from the tedious manual detection of follicles, provide objective assessment of spatial relationships between the ovarian structures and therefore has the potential to improve accuracy. Modern segmentation procedures are performed on 2D images and the three-dimensional (3D) visualization of follicles is obtained from the reconstruction of a sequence of 2D segmented follicles. <p>The objective of this study was to develop a semi-automatic 3D follicle segmentation method based on seeded region growing. The 3D datasets were acquired from a sequence of 2D ultrasound images and the ovarian structures were segmented from the reconstructed ovarian volume in a single step. A seed is placed manually in each follicle and the growth of the seed is controlled by the algorithm using a combination of average grey-level, standard deviation of the intensity, newly-developed volumetric comparison test and a termination criterion. One important contribution of this algorithm is that it overcomes the boundary leakage problem of follicles of conventional 2D segmentation procedures. The results were validated against the aspiration volume of follicles, the manually detected follicles by an expert and an existing algorithm.<p>We anticipate that this algorithm will enhance follicular assessment based on current ultrasound techniques in cases when large numbers of follicles (e.g. ovarian superstimulation) obviate accurate counting and size measurement.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-05272008-131638
Date05 June 2008
CreatorsLu, Qian
ContributorsPierson, Roger A., Mould, David, Eramian, Mark G., Chen, X. B. (Daniel), Adams, Gregg P., Singh, Jaswant
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-05272008-131638/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0015 seconds