Este trabalho apresenta uma proposta de metodologia de estimação de idade óssea baseada em características métricas, utilizando o banco de imagens carpais da Escola de Engenharia de São Carlos (EESC). As imagens foram devidamente segmentadas para obtenção da área, perímetro e comprimento de cada osso, gerando, assim, um banco de dados métricos o CarpEven. As informações da base métrica CarpEven foram submetidas a dois mineradores de dados: ao StARMiner, (Statistical Association Rules) uma metodologia de mineração de dados criada por um grupo de pesquisadores do ICMC-USP, e ao Weka (Waikato Environment for Knowledge Analysis), desenvolvido pela Universidade Waikato da Nova Zelândia. As informações foram submetidas a classificadores neurais, contribuindo, assim, para a criação de uma nova metodologia de estimação de idade óssea. Finalmente, é feita uma comparação entre os resultados obtidos e os resultados já alcançados por outras pesquisas. / This work presents a methodology for bone age estimation based on metric characteristics using the carpal images database from Engineering School of São Carlos (EESC-USP). The images were properly segmented to obtain the area, perimeter and length of each bone, thus generating a metric database named CarpEven. The database information were submitted to two data miners: the StarMiner (Statistical Association Rules Miner) a methodology for data mining created by a group of researchers from ICMC-USP, and the Weka (Waikato Environment for Knowledge Analysis), developed by the University of Waikato in New Zealand. The information was submitted to the neural classifiers contributing to the creation of a new methodology for bone age estimation. The results are compared with those obtained by others research.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17112009-085347 |
Date | 29 September 2009 |
Creators | Raymundo, Evandra Maria |
Contributors | Rodrigues, Evandro Luis Linhari |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds