Return to search

Molecular and structural bases of selenoprotein N dysfunction in diverse forms of congenital muscular dystrophies / Bases moléculaires et structurales du dysfonctionnement de la sélénoprotéine N dans diverses formes de dystrophies musculaires congénitales

Les Selenoprotéines sont des protéines contenant un résidu sélénocystéine (U) dans leur séquence en acide amines. Vingt-cinq sélénoprotéines constituent le sélénoprotéome humain. Parmi elles, la sélénoprotéine N ou SelenoN ; des mutations dans le gène SELENON donnent lieu à un groupe de dystrophies musculaires congénitales appelées myopathies liées à SELENON. SelenoN est une protéine membranaire glycosylée de 72 kDa localisée dans le réticulum endoplasmique. Sa séquence en acide aminés contient le motif redox SCUG, similaire à celui des thioredoxines réductases. Elle contient de même un domaine EF-hand qui est un domaine de liaison au calcium. Des études ont récemment démontré l’implication de cette protéine dans l’établissement et la maintenance du muscle squelettique. D’autres études ont montré qu’elle joue un rôle dans la protection contre le stress oxydatif et l’homéostasie du calcium. Cependant, le mécanisme catalytique de SelenoN reste inconnu à ce jour. Le projet décrit dans cette thèse s’intéresse à la caractérisation, la cristallisation et la comparaison des SelenoNs d’une bactérie, Candidatus poribacteriae, et du poisson zèbre. Les études bio-informatiques ont démontré que SelenoN bactérienne et du poisson zèbre partagent 37% d’identité et un domaine commun correspondant à un repliement de type thioredoxine de fonction inconnue, contenant le motif redox. Les caractérisations biophysiques ont démontré que les deux protéines sont naturellement bien repliées et riche en hélices α. La protéine bactérienne comportant en C-terminal de sa séquence en acide aminé un domaine thioredoxine additionnel, présente une forme étendue et est sous forme monomérique tandis que la protéine du poisson zèbre est un dimère compact. Des caractérisations biochimiques ont montré que le Ca2+ influence l’oligomérisation ou la conformation de SelenoN du poisson zèbre. Des cristaux initiaux de la protéine eucaryote sous sa forme déglycosylée ont pu être obtenus. La cristallisation de la protéine bactérienne a permis d’obtenir des cristaux appartenant à deux groupes d’espaces, avec des paramètres de cellule différents. Néanmoins, un modèle partiel à 2.3 Å couvrant le domaine C-terminal thioredoxine additionnel de SelenoN bactérienne a été obtenu. L’ensemble de ces résultats permettent de poser les bases de l’étude structure-fonction de SelenoN. L’expression, la purification et la cristallisation ont été optimisées et une stratégie pour résoudre la structure 3D de la protéine est proposée. / Selenoproteins are proteins containing a selenocysteine residue (U) in their amino acid sequence. Twenty-five proteins constitute the human selenoproteome. Among them is Selenoprotein N or SelenoN; mutations in the SELENON gene can lead to a group of congenital dystrophies now designated as SELENON-related myopathies. SelenoN is a 72 kDa membrane and glycosylated protein of the endoplasmic reticulum. It handles in its amino acid sequence a redox motif SCUG like the one of thioredoxin reductases, and an EF-hand domain which is a calcium binding site. Recent studies showed the implication of SelenoN in muscle development and maintenance, and position its function at the crossroad between oxidative stress control and calcium homeostasis. However, its catalytic function remains elusive. The research project presented in this thesis concerns the crystallization, characterization and comparison of one bacterial and the zebrafish SelenoNs. Bioinformatics analyses revealed that the two proteins share 37% degree of identity and a common domain which corresponds to a thioredoxin fold of unknown function which includes the redox motif SCUG. From the biophysical characterization, both recombinant proteins are found to be naturally well-folded and enriched in α-helical domains. The bacterial SelenoN which handles an additional C-terminal thioredoxin domain is an extended monomer whereas zebrafish SelenoN is a compact dimer. Biochemical characterization indicated that Ca2+ binding mediates zSelenoN oligomerization. Initial crystals of the zSelenoN in its deglycosylated form were obtained. Bacterial SelenoN crystallization yielded crystals belonging to two different space groups with different cell parameters. An initial partial model covering the C-terminal thioredoxin domain of the bacterial SelenoN was obtained at 2.3Å. Together, these results lay a foundation for the structure-function studies of SelenoN. Conditions for recombinant bacterial and zebrafish SelenoNs expression, purification and crystallization were optimized and strategies for solving the structure are being proposed.

Identiferoai:union.ndltd.org:theses.fr/2017STRAJ127
Date29 November 2017
CreatorsDacleu Siewe, Vanessa
ContributorsStrasbourg, Universität des Saarlandes, Lescure, Alain, Lancaster, Roy
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds