Return to search

Self-assembly of Benzenesulfonate Amphiphiles and Synthesis of Membranes Containing Self-assembled Supramolecular Transport Channels

Six series of cunitic amphiphiles based on benzene sulfonates were synthesized. The molecular characterization was performed by IR and NMR spectroscopy and the purity was determined by elemental analysis and thin layer chromatography. The thermotropic properties of these cunitic sulfonate amphiphiles were subsequently investigated by means of a combination of DSC, polarized microscopy and X-ray scattering. Most of the synthesized sulfonates were found to exhibit hexagonal columnar mesophases, some of them exhibited a complex polymorphism. The polymorphism depended upon variation of the molecular structure. The Six series of cunitic amphiphiles based on benzene sulfonates were synthesized. The molecular characterization was performed by IR and NMR spectroscopy and the purity was determined by elemental analysis and thin layer chromatography. The thermotropic properties of these cunitic sulfonate amphiphiles were subsequently investigated by means of a combination of DSC, polarized microscopy and X-ray scattering. Most of the synthesized sulfonates were found to exhibit hexagonal columnar mesophases, some of them exhibited a complex polymorphism. The polymorphism depended upon variation of the molecular structure. The phase behavior was determined by the nature of headgroup cation Mn+ (n=1, 2), and for the same Mn+ by the carbon number at the hydrophobic tail and by temperature as well. The lyotropic properties of these cunitic sulfonate amphiphiles were also studied by investigating their gelation behavior and gelling capability. A number of the amphiphiles were found to be favorable organogelators that gel various organic solvents of either high or low polarity upon self-aggregation driven by the Coulomb interaction. The morphological results by means of SEM and TEM demonstrate that the organogelators are able to form fibrous network microstructures by self-organization and self-aggregation. The cylindrical aggregates with sulfonated headgroup in the center as well embody the potential to construct ion-selective transport membranes.
The cunitic amphiphiles containing polar sulfonate units at their focal point and polymerizable olefin group on their periphery were exploited to prepare functional membranes that contain ion-active transport channels. The ion-selectivity of the formed membranes was investigated by means of ion transport experiments with LiCl, NaCl, KCl solutions of different concentration. By comparison of the ion transport rates across the membranes the ionic permselectivity was demonstrated.

Identiferoai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-2014010712224
Date07 January 2014
CreatorsSong, Enfeng
ContributorsProf. Dr. Uwe Beginn, Prof. Dr. Lorenz Walder
Source SetsUniversität Osnabrück
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf, application/zip
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds