This thesis aims to cluster financial account time series by extracting global features from the time series and by using two different dimensionality reduction methods, Kohonen Self Organizing Maps and principal component analysis, to cluster the set of the time series by using K-means. The results are then used to further cluster a set of financial services provided by a financial institution, to determine if it is possible to find a set of services which coincide with the time series clusters. The results find several sets of services that are prevalent in the different time series clusters. The resulting method can be used to understand the dynamics between deposits variability and the customers usage of different services and to analyse whether a service is more used in different clusters. / Målet med denna uppsats är att klustra tidsserier över finansiella konton genom att extrahera tidsseriernas karakteristik. För detta används två metoder för att reducera tidsseriernas dimensionalitet, Kohonen Self Organizing Maps och principal komponent analys. Resultatet används sedan för att klustra finansiella tjänster som en kund använder, med syfte att analysera om det existerar ett urval av tjänster som är mer eller mindre förekommande bland olika tidsseriekluster. Resultatet kan användas för att analysera dynamiken mellan kontobehållning och kundens finansiella tjänster, samt om en tjänst är mer förekommande i ett tidsseriekluster.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-291612 |
Date | January 2021 |
Creators | Nordlinder, Magnus |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2021:021 |
Page generated in 0.0016 seconds