• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 12
  • 10
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 40
  • 29
  • 29
  • 24
  • 22
  • 21
  • 20
  • 19
  • 19
  • 18
  • 17
  • 16
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mapas auto - organizáveis de kohonen(SOM) aplicados na avaliação dos parâmetros da qualidade da água / Self - organizing maps of Kohonen (SOM) applied in the evaluation of parameters of water quality

Affonso, Gustavo Souza 16 August 2011 (has links)
A atual crescente necessidade de análise de coleções de dados cada vez mais complexas e extensas, nas diversas áreas da investigação científica, tem permitido o desenvolvimento de novas ferramentas para a melhoria da percepção de informações que nem sempre são explícitas e visíveis. Estudos de ferramentas matemáticas que propiciem o destaque de algumas destas informações, ou que inteligentemente reconheçam padrões associados aos diferentes conjuntos de dados, têm demonstrado resultados promissores. No entanto, o sucesso da escolha da metodologia apropriada para a análise dos dados, está vinculado a vários fatores como: a tecnologia disponível para a prospecção destes dados, a adequada coleta e seleção das amostras, e principalmente, a capacidade do pesquisador em interagir com a nova tecnologia de exploração. No presente projeto, é proposta uma metodologia de análise multidimensional dos dados de unidades de gerenciamento de recursos hídricos UGRHIs, localizadas no estado de São Paulo, por meio das redes neurais SOM (Mapas Auto-Organizáveis). Estes mapas são utilizados para estudar e visualizar possíveis correlações entre as diversas variáveis deste banco de dados relativas à análise de compostos inorgânicos e parâmetros físico químicos referentes à qualidade da água nestas unidades. / The current increasingly need for data analysis on larger and more complex data collections, in many different areas of scientific research, has induced the development of new tools for the perception improvement of information that not always is explicit and visible at first. Studies of mathematical tools which could enable the highlight of some of this information, or should intelligently recognize patterns associated with these different data collection, have been showing promising results. However, the success of the choice of the appropriate analysis method is associated with several factors: the available technology for this data exploration, the correct gathering and selection of samples, and mainly, the researcher ability to interact with the new exploration technology. In this project we propose a methodology for analyzing multidimensional data from Water Resources Management Units (WRMUs), which are located in São Paulo state, through Self - Organizing Maps (SOM) neural networks. These maps are used to study and visualize possible correlations between the different variables existent in this database, which are derived from analysis of inorganic and physical - chemical parameters related to WRMUs water quality
2

Mapas auto - organizáveis de kohonen(SOM) aplicados na avaliação dos parâmetros da qualidade da água / Self - organizing maps of Kohonen (SOM) applied in the evaluation of parameters of water quality

Gustavo Souza Affonso 16 August 2011 (has links)
A atual crescente necessidade de análise de coleções de dados cada vez mais complexas e extensas, nas diversas áreas da investigação científica, tem permitido o desenvolvimento de novas ferramentas para a melhoria da percepção de informações que nem sempre são explícitas e visíveis. Estudos de ferramentas matemáticas que propiciem o destaque de algumas destas informações, ou que inteligentemente reconheçam padrões associados aos diferentes conjuntos de dados, têm demonstrado resultados promissores. No entanto, o sucesso da escolha da metodologia apropriada para a análise dos dados, está vinculado a vários fatores como: a tecnologia disponível para a prospecção destes dados, a adequada coleta e seleção das amostras, e principalmente, a capacidade do pesquisador em interagir com a nova tecnologia de exploração. No presente projeto, é proposta uma metodologia de análise multidimensional dos dados de unidades de gerenciamento de recursos hídricos UGRHIs, localizadas no estado de São Paulo, por meio das redes neurais SOM (Mapas Auto-Organizáveis). Estes mapas são utilizados para estudar e visualizar possíveis correlações entre as diversas variáveis deste banco de dados relativas à análise de compostos inorgânicos e parâmetros físico químicos referentes à qualidade da água nestas unidades. / The current increasingly need for data analysis on larger and more complex data collections, in many different areas of scientific research, has induced the development of new tools for the perception improvement of information that not always is explicit and visible at first. Studies of mathematical tools which could enable the highlight of some of this information, or should intelligently recognize patterns associated with these different data collection, have been showing promising results. However, the success of the choice of the appropriate analysis method is associated with several factors: the available technology for this data exploration, the correct gathering and selection of samples, and mainly, the researcher ability to interact with the new exploration technology. In this project we propose a methodology for analyzing multidimensional data from Water Resources Management Units (WRMUs), which are located in São Paulo state, through Self - Organizing Maps (SOM) neural networks. These maps are used to study and visualize possible correlations between the different variables existent in this database, which are derived from analysis of inorganic and physical - chemical parameters related to WRMUs water quality
3

Clustering of Financial Account Time Series Using Self Organizing Maps / Klustring av Finansiella Konton med Kohonen-kartor

Nordlinder, Magnus January 2021 (has links)
This thesis aims to cluster financial account time series by extracting global features from the time series and by using two different dimensionality reduction methods, Kohonen Self Organizing Maps and principal component analysis, to cluster the set of the time series by using K-means. The results are then used to further cluster a set of financial services provided by a financial institution, to determine if it is possible to find a set of services which coincide with the time series clusters. The results find several sets of services that are prevalent in the different time series clusters. The resulting method can be used to understand the dynamics between deposits variability and the customers usage of different services and to analyse whether a service is more used in different clusters. / Målet med denna uppsats är att klustra tidsserier över finansiella konton genom att extrahera tidsseriernas karakteristik. För detta används två metoder för att reducera tidsseriernas dimensionalitet, Kohonen Self Organizing Maps och principal komponent analys. Resultatet används sedan för att klustra finansiella tjänster som en kund använder, med syfte att analysera om det existerar ett urval av tjänster som är mer eller mindre förekommande bland olika tidsseriekluster. Resultatet kan användas för att analysera dynamiken mellan kontobehållning och kundens finansiella tjänster, samt om en tjänst är mer förekommande i ett tidsseriekluster.
4

A non-invasive technique for the diagnosis of temporomandibular joint disorders

Barlow, Peter A. January 1995 (has links)
No description available.
5

Analysing economic data with self-organizing maps : a geometric neural network approach /

Edler, Lars. January 2007 (has links) (PDF)
Univ., Diss.--Kiel, 2007. / Internetausg.: http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00002606.
6

Uma Aplica??o de Redes Neurais Auto-Organizaveis ? Reconstru??o Tridimensional de Superf?cies

Brito J?nior, Agostinho de Medeiros 14 January 2005 (has links)
Made available in DSpace on 2014-12-17T14:55:02Z (GMT). No. of bitstreams: 1 AgostinhoMBJ_ Ate_cap4.pdf: 2708709 bytes, checksum: 594003810b24cc08c34b728a0e492d9d (MD5) Previous issue date: 2005-01-14 / We propose a multi-resolution approach for surface reconstruction from clouds of unorganized points representing an object surface in 3D space. The proposed method uses a set of mesh operators and simple rules for selective mesh refinement, with a strategy based on Kohonen s self-organizing map. Basically, a self-adaptive scheme is used for iteratively moving vertices of an initial simple mesh in the direction of the set of points, ideally the object boundary. Successive refinement and motion of vertices are applied leading to a more detailed surface, in a multi-resolution, iterative scheme. Reconstruction was experimented with several point sets, induding different shapes and sizes. Results show generated meshes very dose to object final shapes. We include measures of performance and discuss robustness. / ? proposto um m?todo em multi-resolu??o para reconstru??o de superf?cies a partir de nuvens de pontos, que representam a superf?cie de um objeto no espa?o 3D. O m?todo proposto utiliza um conjunto de operadores de malha e regras simples de refinamento seletivo da malha, com um estrat?gia baseada nos mapas auto-organiz?veis de Kohonen. Basicamente, um esquema auto-adaptativo ? utilizado para mover iterativamente os v?rtices de uma malha inicial simples em dire??o ao conjunto de pontos, localizados idealmente na fronteira do objeto. Sucessivos refinamentos da malha e movimenta??es dos seus v?rtices s?o aplicados, levando a superf?cies cada vez mais detalhadas, num esquema iterativo em multi-resolu??o. Experimentos de reconstru??o foram realizados com diversos conjuntos de pontos, de diferentes formas e tamanhos. Os resultados apresentam malhas geradas que s?o muito pr?ximas das formas das superf?cies impl?citas nas amostras. S?o inclu?das medidas de erro e de qualidade e discutida a robustez do algoritmo.
7

Emprego de redes neurais e de descritores moleculares em quimiotaxonomia da família Asteraceae / Use of Neural Networks and Molecular Descriptors in Chemotaxonomy of the Asteraceae Family

Scotti, Marcus Tullius 18 July 2008 (has links)
Esse trabalho descreve o desenvolvimento de uma nova ferramenta quimioinformática designada de SISTEMATX que possibilitou a análise quimiotaxonômica da família Asteraceae, empregando novos parâmetros moleculares, bem como o estudo da relação quantitativa estrutura química atividade biológica de substâncias provenientes desse grupo vegetal. A família Asteraceae, uma das maiores entre as angiospermas, caracteriza-se quimicamente pela produção de sesquiterpenos lactonizados (SLs). Um total de 1111 (SLs), extraídos de 658 espécies, 161 gêneros, 63 subtribos e 15 tribos da família Asteraceae foram representados e cadastrados em duas dimensões no SISTEMATX e associados à respectiva origem botânica. A partir dessa codificação, o grau de oxidação e as estruturas em três dimensões de cada SL foram obtidos pelo sistema. Essas informações, associadas aos dados botânicos, foram exportadas para um arquivo texto, o qual permitiu a obtenção de vários tipos de descritores moleculares. Esses parâmetros moleculares foram correlacionados com o grau de oxidação médio por tribo e tiveram sua seleção realizada por regressão linear múltipla utilizando algoritmo genético. Equações com coeficientes estatísticos variando entre 0,725 ≤ r2 ≤ 0,981 e 0,647 ≤ Qcv2 ≤ 0,725 foram obtidas com apenas um descritor, possibilitando a identificação de algumas características estruturais relacionadas ao grau de oxidação. Não foi obtida nenhuma relação entre o grau de oxidação dos SL e a evolução das tribos da família Asteraceae. Os descritores moleculares também foram usados como dados de entrada para separar as ocorrências botânicas através de mapas auto-organizáveis (rede não supervisionada Kohonen). Os mapas gerados, com cada bloco de descritor, separaram as tribos da família Asteraceae com valores de índices de acerto total entre 66,7% e 83,6%. A análise desses resultados evidencia semelhanças entre as tribos Heliantheae, Helenieae, e Eupatorieae e, também, entre as tribos Anthemideae e Inuleae. Tais observações são coincidentes com as classificações sistemáticas propostas por Bremer, que utilizam principalmente dados morfológicos e, também, moleculares. A mesma abordagem foi utilizada para separar os ramos da tribo Heliantheae, segundo a classificação proposta por Stuessy, cuja separação é baseada no número de cromossomos das subtribos. Os mapas auto-organizáveis obtidos separam em duas regiões distintas os ramos A e C, com elevados índices de acerto total que variam entre 81,79% a 92,48%. Ambos os estudos demonstram que os descritores moleculares podem ser utilizados como uma ferramenta para classificação de táxons em níveis hierárquicos baixos, tais como tribos e subtribos. Adicionalmente, foi demonstrado que os marcadores químicos corroboram parcialmente com as classificações que empregam dados morfológicos e moleculares. Os descritores obtidos por fragmentos ou pela representação da estrutura dos SLs em duas dimensões foram suficientes para obtenção de resultados significativos, não sendo obtida melhora nos resultados com os descritores que utilizam a representação em três dimensões das estruturas. Paralelamente, um estudo adicional foi realizado relacionando a estrutura química, representada pelos mesmos descritores moleculares anteriormente mencionados, com a atividade citotóxica de 37 SLs frente às células tumorais da nasofaringe KB. Uma equação com índices estatísticos significativos (r2=0,826 e Qcv2=0,743) foi obtida. Os cinco descritores, selecionados a partir de uma equação estatisticamente mais significativa, representam uma descrição global de propriedades estéricas e características eletrônicas de cada molécula que auxiliaram na determinação de fragmentos estruturais importantes para a atividade citotóxica. Tal modelo permitiu verificar que os esqueletos carbônicos dos tipos guaianolídeo e pseudoguaianolídeo são encontrados nos SLs que apresentam maior atividade citotóxica. / This work describes the development of a new chemoinformatic tool named SISTEMATX that allowed the chemotaxonomic analysis of the Asteraceae family employing new molecular parameters, as well as the quantitative structure activity relationship study of compounds produced by this botanical group. The Asteraceae, one of the largest families among of angiosperms, is chemically characterized by the production of sesquiterpene lactones (SLs). A total of 1111 (SLs), extracted from 658 species, 161 genera, 63 subtribes and 15 tribes of the Asteraceae, were represented and registered in two dimensions in the SISTEMATX and associated with their botanical source. From this codification, the degree of oxidation and the structures in three dimensions of each SL were obtained by the system. These data linked with botanical origin were exported for a text file which allow the generation of several types of molecular descriptors. These molecular parameters were correlated with the average oxidation degree by tribe and were selected by multiple linear regressions using genetic algorithms. Equations with statistical coefficients varying between 0,725 ≤ r2 0,981 and 0,647 ≤ Qcv2 ≤ 0,725 were obtained with only one descriptor, making possible the identification of some structural characteristics related to the oxidation level. Any relationship between the degree of oxidation of SL and the tribes evolution of the family Asteraceae was not obtained. The molecular descriptors were also used as input data to separate the botanical occurrences through the self organizing-maps (unsupervised net Kohonen). The generated maps with each block descriptor, divide the Asteraceae tribes with total indexes values between 66,7% and 83,6%. The analysis of these results shows evident similarities among the Heliantheae, Helenieae and Eupatorieae tribes and, also, between the Anthemideae and Inuleae tribes. Those observations are in agreement with the systematic classifications proposed by Bremer, that use mainly morphologic and, also, molecular data. The same approach was utilized to separate the branches of the Heliantheae tribe, according to the Stuessys classification, whose division is based on the chromosome numbers of the subtribes. From the obtained self-organizing maps, two different areas (branches A and C) were separated with high hit indexes varying among 81,79% to 92,48%. Both studies demonstrate that the molecular descriptors can be used as a tool for taxon classification in low hierarchical levels such as tribes and subtribes. Additionally, was demonstrated that the chemical markers partially corroborate with the classifications that use morphologic and molecular data. Descriptors obtained by fragments or by the representation of the SL structures in two dimensions were sufficient to obtain significant results, and were not obtained better results with descriptors that utilize the structure representation in three dimensions. An additional study was accomplished relating the chemical structure, represented by the same molecular descriptors previously mentioned, with the cytotoxic activity of 37 SLs against tumoral cells derived from human carcinoma of the nasopharynx (KB). An equation with significant statistical indexes was obtained. The five descriptors, selected from the more statistical significant equation, shows a global description of sterical properties and electronic characteristics of each molecule that aid in the determination of important structural fragments for the cytotoxic activity. From the model can be verified that the carbon skeletons of the guaianolide and pseudoguaianolide types are encountered in the SLs that show the higher cytotoxic activity.
8

Détection de la présence humaine et évaluation de la qualité du sommeil en établissement d’hébergement pour personnes âgées dépendantes (EHPAD) / Detecting human presence and evaluation of sleep quality in accomodation establishment for the dependent elderly (nursing homes)

Guettari, Toufik 15 December 2014 (has links)
En France, en Europe et dans le monde entier, le vieillissement de la population est une réalité. Une partie de cette population âgée est dite dépendante car elle n’est plus en mesure d’assumer seule les tâches de la vie quotidienne. L’enjeu sociétal est alors de garantir un niveau de bien-être et de sécurité à ces personnes, compatible avec l’évolution du niveau de vie et des usages et habitudes ‘modernes’. Très logiquement, les domaines de recherche liés à la problématique des personnes âgées à domicile font preuve d’un grand dynamisme, alors que la maison de retraite, qui reste la solution pour la grande dépendance, a été un peu délaissée. Néanmoins, la pénurie de personnel conjuguée à l’augmentation des coûts et des exigences des résidents offre une opportunité à des solutions innovantes basées sur les TIC. Les travaux de cette thèse de doctorat sous convention CIFRE se sont déroulés dans ce contexte au sein de l’équipe de recherche de Legrand et du département d’Electronique et Physique de Télécom SudParis à Evry. Le sujet concerne la conception d’un nouveau capteur (non-porté) intégrant l’installation électrique du lieu de vie du patient ainsi que la fusion avec d’autres capteurs de l’infrastructure afin de suivre l’activité du résident et, le cas échéant, soit signaler en temps réel des situations nécessitant le recours d’un aidant, soit identifier des dérives lentes dont l’interprétation sera du ressort du personnel médical. Les travaux de la thèse ont été en partie intégrés au projet FUI14 « E-monitor’âge » dont l’objectif est précisément la « supervision » des résidents. Ce mémoire est structuré de manière à présenter l’historique de ces travaux et la démarche opérée pour leur réalisation. Nous introduisons le contexte et les besoins identifiés pour le suivi des personnes âgées dans les maisons de retraites. Nous faisons un point sur les systèmes de supervision/monitoring existants et nous présentons les méthodes et les techniques de détection de situations d’urgence. Nous terminons cette partie du mémoire (chapitre 1) par la spécification du problème majeur rencontré par ces systèmes de supervision qui est celui de la détection de présence d’une personne. En s’appuyant sur la technologie des capteurs pyro-électriques, la partie suivante propose une solution originale de traitement de signal pour la détection d’une présence humaine dans une chambre voire la détection de présence de plusieurs personnes à la fois (chapitre 2). Le chapitre 3 introduit ensuite un capteur thermique à base de thermopiles afin de détecter la présence d’une personne dans son lit, ce que ne permet pas la technologie pyro-électrique qui ne détecte pas un corps chaud immobile. Dans cette partie nous limitons l’utilisation de ce capteur à la détection de la présence de la personne dans son lit (chapitre 4) voire à l’estimation de la qualité de son sommeil qui constitue d’une part l’originalité de nos travaux s’appuyant sur des approches de classification non-supervisée, et qui ouvre des perspectives encourageantes quant à l’utilisation de ce capteur pour caractériser relativement finement le type de sommeil d’autre part (chapitre 5) / In France, in Europe and worldwide, the aging population is a reality. Some of these elderly people lose their autonomy as they are no longer able to manage alone the tasks of daily life. The societal issue is therefore to ensure a level of well-being and safety of these persons, consistent with changes in living standards, customs and modern habits. The research areas related to the problems of elderly people at home are showing great dynamism, while the nursing home, which remains the solution for cases of high dependence, is somewhat neglected. Nevertheless, staff shortages combined with rising costs and residents’ demands offer an opportunity for innovative ICT-based solutions. The work presented here was performed, in the context of a CIFRE doctoral thesis, within the Legrand research team and at the physics and electronics department of Mines-Telecom SudParis at Evry. The subject and project aim was twofold: firstly, designing a new sensor which will be incorporated in the electrical installation of the patient’s living space, and secondly, a multi-sensor merger to monitor the activity of the resident in order to enable real-time reporting of situations requiring the caregiver’s intervention or to detect slow drifts whose interpretation will be the responsibility of the medical staff. The work carried out for the purpose of this thesis has been included partially in the FUI 14 project whose propose is precisely the “supervision of residents in the nursing home”. The present paper is structured in such a way as to introduce the background of the work and the approach taken to perform it. The context and needs identified for monitoring of nursing home residents are also introduced. We begin by describing existing monitoring systems and the technical methods used to detect emergency situations. We end the first part (chapter 1) of this paper by specifying the major problem encountered when testing existing monitoring systems based on ambient sensors: namely how to detect the presence of an immobile and silent person in the room. Using an existing pyro-electric infrared sensors network installation in a nursing home, the next section proposes an original solution for detecting human presence in a room and also for differentiating between the presence of one and the presence of more than one person (chapter 2). Chapter 3 presents a new sensor integrated into the electrical installation of the patient’s living space. Here, we introduce a thermopile based thermal sensor in order to detect the presence of a person in his/her living space. In this work we restrict the use of this sensor to detecting the presence of the person in bed (chapter 4). The estimation of sleep quality which represents the original dimension of our work is presented in chapter 5. Differentiation between different phases of sleep is based on unsupervised classification approaches. Our project opens up encouraging prospects for the use of this type of sensor for relatively fine characterization of different kinds of sleep
9

[en] A BAYESIAN APPROACH TO ESTIMATE THE EFFICIENT OPERATIONAL COSTS OF ELECTRICAL ENERGY UTILITIES / [pt] UMA ABORDAGEM BAYESIANA PARA O CÁLCULO DOS CUSTOS OPERACIONAIS EFICIENTES DAS DISTRIBUIDORAS DE ENERGIA ELÉTRICA

MARCUS VINICIUS PEREIRA DE SOUZA 17 October 2008 (has links)
[pt] Esta tese apresenta os principais resultados de medidas de eficiência dos custos operacionais de 60 distribuidoras brasileiras de energia elétrica. Baseado no esquema yardstick competition, foi utilizado uma Rede Neural d e Kohonen (KNN) para identificar grupos de empresas similares. Os resultados obtidos pela KNN não são determinísticos, visto que os pesos sinápticos da rede são inicializados aleatoriamente. Então, é realizada uma simulação de Monte Carlo para encontrar os clusters mais frequentes. As medidas foram obtidas por modelos DEA (input oriented, com e sem restrições aos pesos) e modelos Bayesianos e frequencistas de fronteira estocástica (utilizando as funções Cobb-Douglas e Translog). Em todos os modelos, DEA e SFA, a única variável input refere-se ao custo operacional (OPEX). Os índices de eficiência destes modelos representam a potencial redução destes custos de acordo com cada concessionária avaliada. Os outputs são os cost drivers da variável OPEX: número de unidades consumidoras (uma proxy da quantidade de serviço), montante de energia distribuída (uma proxy do produto total) e a extensão da rede de distribuição (uma proxy da dispersão dos consumidores na área de concessão). Finalmente, vale registrar que estas técnicas podem mitigar a assimetria de informação e aprimorar a habilidade do agente regulador em comparar os desempenhos das distribuidoras em ambientes de regulação incentivada. / [en] This thesis presents the main results of the cost efficiency scores of 60 Brazilian electricity distribution utilities. Based on yardstick competition scheme, it was applied a Kohonen Neural Networks (KNN) to identify and to group the similar utilities. The KNN results are not deterministic, since the estimated weights are randomly initialized. Thus, a Monte Carlo simulation was used in order to find the most frequent clusters. Therefore was examined the use of the DEA methodology (input oriented, with and without weight constraints) and Bayesian and non- Bayesian Stochastic Frontier Analysis (centered on a Cobb- Douglas and Translog cost functions) to evaluate the cost efficiency scores of electricity distribution utilities. In both models the only input variable is operational cost (OPEX). The efficiency measures from these models reflect the potential of the reduction of operational costs of each utility. The outputs are the cost-drivers of the OPEX: the number of customers (a proxy for the amount of service), the total electric power supplied (a proxy for the amount of product delivered) and the distribution network size (a proxy of the customers scattering in the operating territory of each distribution utility). Finally, it is important to mention that these techniques can reduce the information assimetry to improve the regulator´s skill to compare the performance of the utilities in incentive regulation environments.
10

Previsão de inadimplência e redes neurais artificiais / Forecast of insolvency and neural networks

Lourenço da Rocha Guimarães 02 August 2006 (has links)
O objetivo deste trabalho é a previsão de inadimplência. Foram implementados dois modelos de previsão de inadimplência, de modo que o primeiro modelo fez uso de uma rede neural feedforward utilizando o algoritmo de retro propagação, e o segundo utilizou uma rede não supervisionada (rede Kohonen). As características relevantes de usuários de crédito foram apresentadas para as redes neurais, para o seu treinamento e teste. Os resultados obtidos demonstram que tanto as redes neurais supervisionadas quanto as redes neurais não supervisionadas mostraram-se instrumentos eficazes para o processo de previsão de inadimplência. / The objective of this work is the insolvency forecast. They were implemented two insolvency forecast models, so that the first model used a feed forward neural network utilizing the retro propagation algorithm, and the second utilized a non-supervised neural network (Kohonen networks). The prominent characteristics of credit users were presented for the neural networks, for their training and test. The results obtained showed that the supervised network as well the non-supervised neural network showed themselves efficient instruments for the insolvency forecast trial.

Page generated in 0.0328 seconds