Return to search

Unsupervised 3D Human Pose Estimation / Oövervakad mänsklig poseuppskattning i 3D

The thesis proposes an unsupervised representation learning method to predict 3D human pose from a 2D skeleton via a VAEGAN (Variational Autoencoder Generative Adversarial Network) hybrid network. The method learns to lift poses from 2D to 3D using selfsupervision and adversarial learning techniques. The method does not use images, heatmaps, 3D pose annotations, paired/unpaired 2Dto3D skeletons, 3D priors, synthetic 2D skeletons, multiview or temporal information in any shape or form. The 2D skeleton input is taken by a VAE that encodes it in a latent space and then decodes that latent representation to a 3D pose. The 3D pose is then reprojected to 2D for a constrained, selfsupervised optimization using the input 2D pose. Parallelly, the 3D pose is also randomly rotated and reprojected to 2D to generate a ’novel’ 2D view for unconstrained adversarial optimization using a discriminator network. The combination of the optimizations of the original and the novel 2D views of the predicted 3D pose results in a ’realistic’ 3D pose generation. The thesis shows that the encoding and decoding process of the VAE addresses the major challenge of erroneous and incomplete skeletons from 2D detection networks as inputs and that the variance of the VAE can be altered to get various plausible 3D poses for a given 2D input. Additionally, the latent representation could be used for crossmodal training and many downstream applications. The results on Human3.6M datasets outperform previous unsupervised approaches with less model complexity while addressing more hurdles in scaling the task to the real world. / Uppsatsen föreslår en oövervakad metod för representationslärande för att förutsäga en 3Dpose från ett 2D skelett med hjälp av ett VAE GAN (Variationellt Autoenkodande Generativt Adversariellt Nätverk) hybrid neuralt nätverk. Metoden lär sig att utvidga poser från 2D till 3D genom att använda självövervakning och adversariella inlärningstekniker. Metoden använder sig vare sig av bilder, värmekartor, 3D poseannotationer, parade/oparade 2D till 3D skelett, a priori information i 3D, syntetiska 2Dskelett, flera vyer, eller tidsinformation. 2Dskelettindata tas från ett VAE som kodar det i en latent rymd och sedan avkodar den latenta representationen till en 3Dpose. 3D posen är sedan återprojicerad till 2D för att genomgå begränsad, självövervakad optimering med hjälp av den tvådimensionella posen. Parallellt roteras dessutom 3Dposen slumpmässigt och återprojiceras till 2D för att generera en ny 2D vy för obegränsad adversariell optimering med hjälp av ett diskriminatornätverk. Kombinationen av optimeringarna av den ursprungliga och den nya 2Dvyn av den förutsagda 3Dposen resulterar i en realistisk 3Dposegenerering. Resultaten i uppsatsen visar att kodningsoch avkodningsprocessen av VAE adresserar utmaningen med felaktiga och ofullständiga skelett från 2D detekteringsnätverk som indata och att variansen av VAE kan modifieras för att få flera troliga 3D poser för givna 2D indata. Dessutom kan den latenta representationen användas för crossmodal träning och flera nedströmsapplikationer. Resultaten på datamängder från Human3.6M är bättre än tidigare oövervakade metoder med mindre modellkomplexitet samtidigt som de adresserar flera hinder för att skala upp uppgiften till verkliga tillämpningar.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-291435
Date January 2021
CreatorsBudaraju, Sri Datta
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:52

Page generated in 0.0027 seconds