Return to search

Performance Study on the Cleaning of Air Streams Laden with Mixed VOC Compounds Used in Semiconductor Industries

This study armed to develop a biofilter packed only with fern chips for the removal of air-borne low concentration VOCs (volatile organic compounds) emitted from semiconductor manufacturing industries. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters.
Performance of biofiltration for removal of simulated semiconductor manufacturing emitted gases consisting of IPA (isopropyl alcohol), acetone, HMDS (hexamethylene disilazane), PGME (propylene glycol monomethyl ether), and PGMEA (propylene glycol monomethyl ether acetate) was studied in a pilot-scale biofilter consisted of two columns (40-cmW x 40-cmL x 70-cmH acrylic column) arranged in series. Each column was packed with fern chips to a packing volume of around 56 L (0.40 m¡Ñ0.40 m¡Ñ0.35 mH). A sprinkler was set over the packed fern chips for providing them with water and nutrition solutions. Liquid leached from both layers of chips were collected in the bottom container of the column.
The experiment lasted for 182 days which was divided into four phases with varying influent gas flow rates and VOC concentrations. Gas samples collected around 3 times per week from the influent as well a the first and second stage effluents were analyzed for VOC concentrations. On a weekly basis, fern chips sampled from each column were also analyzed for getting pH, moisture, and the absorbed VOC content of the chips. Phase shifted if it obtained a quasi-steady state which was judged by the nearly unchanging VOC removal efficiencies.
Operation conditions of an empty bed retention time (EBRT) of 1.50 min and influent VOC concentrations of 159-284 mg/m3 were used in the Phase I experiment which lasted for 15 days. Nutrition of 1.34 g milk powder/m3.d was used in this phase and the conditions gave an average volumetric VOC loading (L) of 15.1 g/m3.h. Effluent VOC concentrations were 3-18 mg/m3 and an average VOC removal of 96% was obtained in this phase. An EBRT of 0.75 min, L of 11.44 g/m3.h, and nutrition of 1.34 g milk powder/m3.d were used in the Phase II experiment. VOCs in the gas could be removed from 90-126 to 1-19.6 mg/m3 and an average efficiency of 94% was obtained.
Following Phase II, an average VOC removal of only 48% was obtained with an EBRT of 0.75 min, nutrition of 2.0 g milk powder/m3.d, and L of 22.8 g/m3.h in Phases III experiment during the 56-97th days from the startup time. Additional nitrogen (urea) and phosphorus (potassium dihydrogen phosphate) was added to the media from the 105th day and the VOC removal increased to 80% at the 107th day. An average VOC removal of around 93% was obtained in phase III experiment. The results showed that enough nutrition is essential to the successful performance for the biofiltration process.
Phase IV experiment lasted for 59 days with an EBRT of 0.75 min, L of 34.1 g/m3.h, and nutrition of 2.0-6.0 g/m3.d. During the initial period of this phase, media pH dropped from 7.8 to 5.8 due to an excess nitrogen (ammonium chloride) addition as high as 12.35 g N/m3.d which resulted in nitrification reaction in the media. By stopping nitrogen, increasing milk powder dosing, and addition of NaHCO3 at the 140th day, pH restored to 7.5 in the following days. VOC removal increased to an average of 92% in the rest operation days.
From the results, it could be proposed that for achieving over 90% of the VOC removal, appropriate operation conditions are media moisture content = 52-65%, media pH = 7-8, influent VOC concentration = 150-450 mg/Am3, EBRT = 0.75 min, and L to the whole media = 11-34 g/m3.h.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0721106-171356
Date21 July 2006
CreatorsLi, Shang-chuan
Contributorsnone, none, none
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0721106-171356
Rightsrestricted, Copyright information available at source archive

Page generated in 0.0024 seconds