• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characteristics of Gas-born Ammonia Removal and Oxidation by a Biotrickling Filter and a Fern-chip Packed Biofilter

Wang, Chia-hsi 20 July 2007 (has links)
Ammonia, a colorless gas with a characteristic pungent odor, is produced by various industrial and agricultural activities. Emissions of ammonia into the atmosphere not only cause a nuisance in the vicinity of the sources, but also have various environmental effects, such as eutrophication and acidification of terrestrial and aquatic ecosystems, and visibility problems resulting from the formation of aerosols. The traditional treatment of ammonia emissions is based on physical and/or chemical processes, both of which are expensive and produce secondary pollutants. Biological methods are effective and economical for biodegradable odorants and VOC contaminants. This study used fixed-film bioreactors, a biofilter and a biotrickling filter, to remove and oxidize gas-born ammonia. Firstly, a pilot-scale biofilter consisted of two columns (40 cmW ¡Ñ 40 cmL ¡Ñ 70 cmH acrylic column) arranged in series. A medium consisting solely of fern chips, on which biofilms were cultivated, was used as a packing material. The biofilter was tested continuously for 110 days, measuring the removal efficiency, empty bed residence time (EBRT), removal capacity, pressure drop, moisture content and pH. Most of ammonia was eliminated in the first biofiltration column and the removal efficiency increased with the increase in EBRT. Complete removal of the influent ammonia (20-120 ppm) was obtained with an ammonia loading as high as 5.4 g N kg-1 dry media d-1 during the experiment. The Michaelis-Menten equation was tested to be adequate for modeling the ammonia elimination kinetics in the biofilter and the maximum removal rate (Vm) and the half-saturation constant (Ks) were estimated to be 28.2 g N kg-1 dry media d-1 and 129 ppm, respectively. Secondly, a pilot-scale reactor, consisting of a set of two-stage-in-series biotrickling filters, an influent gas supply system and a liquid recirculation system, was utilized to treat ammonia in an air stream. Each stage of the biotrickling filter was constructed from a 20 cm ¡Ñ 200 cm (inner diameter ¡Ñ height) acrylic column packed with cokes (average diameter = 3.0 cm, specific area = 150 m2/m3) of 125 cm height. Experimental results indicate that a time of 30 days is required for development of biofilms for nitrification of the absorbed ammonia from the gas. Long-term (187 days) experimental results show that, in the conditions of EBRT (empty bed gas retention time) = 7.25 s, ¡§circulation liquid/gas¡¨ flow rate ratio = 7.7 L m-3, and liquid pH = 6.65, the level of ammonia in the influent gas was reduced from 230 to 4.0 ppm. With the volumetric ammonia loading of less than 7.37 g NH3-N m-3 hr-1, the system could achieve ammonia removal and nitrification efficiencies of 98 and 94%, respectively, without supplementary glucose as a carbon source. However, with a loading of 13.1 g NH3-N m3 h-1, both decreased gradually due to a lake of carbon source and an accumulation of ammonium and nitrite ions in the recirculation liquid.
2

Performance Study on the Field Treatment of VOCs Emitted from a Solvent Plant by Biofilter Packed with Fern Chips

Tseng, Chia-Ling 04 August 2010 (has links)
Organic solvent production plants emit waste gases containing volatile organic compounds (VOCs) which are usually harmful to the environments and public healths. Plant managers are obligated to control the VOC emission to meet regulations at reasonable costs. A solvent plant located in southern Taiwan emits VOC-containing gas streams from some distillation columns and storage vessels with a total ventilation gas flow rate of 2.6-3.6 m3/min which contains VOCs with concentrations of less than 1,000 mg C/m3. Due to a concern of plant¡¦s safety, the plant managers constructed a full-scale biofilter for eliminating a part of the VOCs and the associated odors in the waste gas. This study aimed to investigate the effects of operation parameters such as EBRT (empty bed retention time) of the gas through the biofiltration media and organic loading to the media on the VOC removal efficiency. The biofilter is constructed of RC (reinforced concrete) with outer dimensions of 8.45 mL ¡Ñ 3.30 mW ¡Ñ 3.00 mH. The filter was also instrumented with inverters for control of speed of induced fans, and with thermometers, hygrometers, and wind speed meters. Fern chips with a total packing volume of 36 m3 was used as the biofiltration media. After inoculation with suitable microorganisms, the waste gas was introduced to the filter for VOC elimination. Nutrients (urea, milk, and a phosphate salt) and water were supplemented to the media on a daily basis. The investigation period is July, 2008 to May, 2010. In the period, THC (total hydrocarbon) concentrations for the influent and effluent gases to and from the reactor were daily measured. In addition, on a weekly basis, compositions of the VOCs in gas samples were detected by a gas chromatography equipped with a flame ionization dector (FID). On the same time basis, pH, COD (chemical oxygen demand), SS (suspended solids) in a sample of the trickled liquid from the media was analyzed. Media pH and moisture content were also analyzed for understanding the environmental conditions around the microorganisms for the VOC degradation. Results indicated that the media was in conditions of pH = 4.5-7.0, moisture = 11-61 % in the experimental phase. Trickled liquid had low COD and SS contents which can be easily treated by the existing wastewater unit in the plant, or be recycled to the media. Avarage THC, NMHC (nonmethane hydrocarbon), and VOCs were 71, 73, and 79%, respectively, with gas EBRTs of 4.2-6.3 min. With media pH of 4-5 and moisture contents 51-57%, over 90% of the influent VOCs coulb be eliminated. However, nearly dried media (moisture around 10%) had VOC removal efficiencies of lower than 30%. Nutrition tests indicate that the VOC removal efficiency was nearly proportional to milk supplementation rate. Removal of ethnaol and acetic could easily be removed with an efficiency of over 97% while 2-pentane was only 74%. Odor intensities of the treated gas could be controlled to <1,000 (dilutions to threshold) according to 3 test data.
3

Studies on the elimination of volatile organic compounds in industry waste gas streams

Li, Shang-Chuan 17 August 2010 (has links)
This study aimed to develop a biofilter packed only with fern chips for the removal of air-borne low concentration VOCs (volatile organic compounds) emitted from various industries such as semiconductor manufacturing and electronic ones. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. The study contains two topics. The first is a performance test on the elimination of mixed VOCs used in semiconductor manufacturing industries in an air stream. The second is the one on the elimination of a single VOC (methyl ethyl ketone) in a waste gas drawn from a CCL (copper clad laminate) plant. Two pilot-scale biofilters consisted of two columns (0.40 mW¡Ñ0.40 mL¡Ñ0.70 mH acrylic column) arranged in series were used for the performance tests. Each of the two columns was packed with fern chips to a packing volume of around 56 L (0.40 mW¡Ñ0.40 mL¡Ñ0.35 mH). A sprinkler was set over the packed fern chips for providing them with water and nutrition solutions. Liquid leached from both layers of chips were collected in the bottom container of the column. In the first topic, tests were performed for biofiltration removal of VOCs in simulated semiconductor manufacturing emitted gases which consisted of IPA (isopropyl alcohol), acetone, HMDS (hexamethylene disilazane), PGME (propylene glycol monomethyl ether), and PGMEA (propylene glycol monomethyl ether acetate). From the results, it could be proposed that for achieving over 94% of the VOC removal, appropriate operation conditions are media moisture content = 52-68%, media pH = 7-8, influent VOC concentration = 150-450 mg/Am3, empty bed residence time (EBRT) = 0.75 min, and volumetric organic loading L to the whole media = 11.4-34.1 g/m3.h. In the second topic, performances of biofiltration for the removal of methyl ethyl ketone (MEK) in a gas stream from a copper clad laminate (CCL) manufacturing process were tested. Experimental results indicate that with L of <115 g /m3.h., EBRT = 0.5-1.28 min , media pH = 5.3-6.8, influent MEK concentration = 215-1,670 mg/Am3, MEK removal efficiencies of over 91% were obtained. Instant milk powder was essential to the good and stable performance of the biofilter for MEK removal.
4

Study on the Treatment of Airborne Isopropyl Alcohol (IPA) by Biofilter Packed with Fern Chips

Jiang, Chin-wen 10 August 2005 (has links)
Abstract Biological processes have been proven to be economical and effective for control of VOCs with concentration of <1,000 mg C/m3. This study armed to develop a biofilter packed only with fern chips for the removal of airborne isopropyl alcohol (IPA). A three-stage down-flow biofilter (2.2 m in height and 0.4 m¡Ñ0.4 m in cross-sectional area) was constructed for the performance test. The first stage serviced as a humidifier for the incoming gas and the following two stages, both packed with fern chips with a packing space of 0.30 m ¡Ñ 0.40 m ¡Ñ0.40 m, as trickling bed biofilters for the VOC removal. Air with a nearly constant IPA concentration of 100 mg/Am3 (@ an average temperature of 34 oC) and a flow rate in the range of 100-400 L/min was fed to the reactor in Phase I test. The flow rate gave an empty bed retention time (EBRT) in the range of 12-48 s for the gas flowing through the two bed media. Solutions of urea-N, phosphate-P, and milk powder were supplied daily to the fern chips for the microbial nutrition in Phase I experiment which lasted for 26 days. Following the Phase, Phase II test operated with a constant EBRT of 12 s and without any nutrient supplementation for 30 days. Experimental results show that with an influent gas temperature of 29-40oC (average 34 oC) and relative humidity of 43-93% (average 73%), with a proper moistening of the bed media, the effluent gas could achieved a temperature of 26-35oC (average 29 oC) and a relative humidity of 98%. The proceeding medium experienced a greater moisture variation (12-68%, average 38%) than that (65-82%, average 72%) of the following one. The former and the latter media had pH in the range of 6.11-7.78 (average 6.77) and 6.13-7.36 (average 6.59), respectively. With no additional nutrient supplementation for 30 days, approximately 98% of the influent IPA of 100 mg/m3 could be removed at the EBRT of as short as 12 s which corresponded to a loading of 60 g IPA/m3.h.
5

Study on the Treatment of Airborne Propylene Glycol Monomethyl Ether Acetate (PGMEA) by Biofilter Packed with Fern Chips

Peng, Hsiao-ting 26 June 2006 (has links)
This study armed to develop a biofilter packed only with fern chips for the removal of air-borne propylene glycol monomethyl ether acetate (PGMEA). The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. In the present study, a three stage down-flow biofilter (2.18 m in height and 0.4 m¡Ñ0.4 m in cross-sectional area) was constructed for the performance test. The first stage serviced as a humidifier for the incoming gas and the following two stages, both packed with fern chips of 0.30 m ¡Ñ 0.40 m ¡Ñ0.40 m, as trickling bed biofilters for the VOC removal. The experiment was divided into four phases. Operation conditions of an empty bed retention time (EBRT) of 1.60min and influent PGMEA concentrations of 9.33-329 (average 78.4) mg/m3 were used in the Phase I experiment which lasted for 99 days. An average PGMEA removal of only 68% was obtained in this phase. For improving the PGMEA removal in the following phases, a fixed dosage of milk powder of 1.0 g/(m3 media. day) added as aqueous milk suspension was added to the media for nutrition of the biofilms on the fern chip surfaces. After an additional operation time of 20 days (the 127th day from the startup time), a stable PGMEA removal of 91% was achieved. Following Phase II, PGMEA removals of 93 and 94% were obtained with EBRTs of 0.40 and 0.27 min, respectively, in Phases III and IV experiments. The results indicate that EBRT was not a key influencing factor to the PGMEA removal as long as the media had a high ability for the VOC degradation. Experimental data obtained from Phases II-IV reveal that with volumetric loadings (L) of less than 250 g PGMEA/(m3.h) to the up-streaming half of the whole media, 90% of the influent PGMEA could be removed in this half media. An additional 80% of the influent PGMEA to the following half media could be removed with L < 100 g PGMEA/(m3.h) to the half media. The PGMEA elimination capacities were proportional to the volumetric loadings of less than 250 g PGMEA/(m3.h). From the results, it could be proposed that for achieving over 93% of the PGMEA removal, appropriate operation conditions are media moisture content = 52-65%, media pH = 7.2-7.4, influent PGMEA concentration = 100-400 mg/Am3, EBRT = 0.27-0.40 min, and L to the whole media = 45-180 g PGMEA/(m3.h).
6

Performance Study on the Cleaning of Air Streams Laden with Mixed VOC Compounds Used in Semiconductor Industries

Li, Shang-chuan 21 July 2006 (has links)
This study armed to develop a biofilter packed only with fern chips for the removal of air-borne low concentration VOCs (volatile organic compounds) emitted from semiconductor manufacturing industries. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. Performance of biofiltration for removal of simulated semiconductor manufacturing emitted gases consisting of IPA (isopropyl alcohol), acetone, HMDS (hexamethylene disilazane), PGME (propylene glycol monomethyl ether), and PGMEA (propylene glycol monomethyl ether acetate) was studied in a pilot-scale biofilter consisted of two columns (40-cmW x 40-cmL x 70-cmH acrylic column) arranged in series. Each column was packed with fern chips to a packing volume of around 56 L (0.40 m¡Ñ0.40 m¡Ñ0.35 mH). A sprinkler was set over the packed fern chips for providing them with water and nutrition solutions. Liquid leached from both layers of chips were collected in the bottom container of the column. The experiment lasted for 182 days which was divided into four phases with varying influent gas flow rates and VOC concentrations. Gas samples collected around 3 times per week from the influent as well a the first and second stage effluents were analyzed for VOC concentrations. On a weekly basis, fern chips sampled from each column were also analyzed for getting pH, moisture, and the absorbed VOC content of the chips. Phase shifted if it obtained a quasi-steady state which was judged by the nearly unchanging VOC removal efficiencies. Operation conditions of an empty bed retention time (EBRT) of 1.50 min and influent VOC concentrations of 159-284 mg/m3 were used in the Phase I experiment which lasted for 15 days. Nutrition of 1.34 g milk powder/m3.d was used in this phase and the conditions gave an average volumetric VOC loading (L) of 15.1 g/m3.h. Effluent VOC concentrations were 3-18 mg/m3 and an average VOC removal of 96% was obtained in this phase. An EBRT of 0.75 min, L of 11.44 g/m3.h, and nutrition of 1.34 g milk powder/m3.d were used in the Phase II experiment. VOCs in the gas could be removed from 90-126 to 1-19.6 mg/m3 and an average efficiency of 94% was obtained. Following Phase II, an average VOC removal of only 48% was obtained with an EBRT of 0.75 min, nutrition of 2.0 g milk powder/m3.d, and L of 22.8 g/m3.h in Phases III experiment during the 56-97th days from the startup time. Additional nitrogen (urea) and phosphorus (potassium dihydrogen phosphate) was added to the media from the 105th day and the VOC removal increased to 80% at the 107th day. An average VOC removal of around 93% was obtained in phase III experiment. The results showed that enough nutrition is essential to the successful performance for the biofiltration process. Phase IV experiment lasted for 59 days with an EBRT of 0.75 min, L of 34.1 g/m3.h, and nutrition of 2.0-6.0 g/m3.d. During the initial period of this phase, media pH dropped from 7.8 to 5.8 due to an excess nitrogen (ammonium chloride) addition as high as 12.35 g N/m3.d which resulted in nitrification reaction in the media. By stopping nitrogen, increasing milk powder dosing, and addition of NaHCO3 at the 140th day, pH restored to 7.5 in the following days. VOC removal increased to an average of 92% in the rest operation days. From the results, it could be proposed that for achieving over 90% of the VOC removal, appropriate operation conditions are media moisture content = 52-65%, media pH = 7-8, influent VOC concentration = 150-450 mg/Am3, EBRT = 0.75 min, and L to the whole media = 11-34 g/m3.h.
7

Performance Study on the Treatment of Airborne VOCs Generated from A Chemical Plant by A Pilot Biofiter Packed with Fern Chips

Huang, Jing-yi 25 June 2008 (has links)
This study armed to develop a biotrickling biofilter packed only with fern chips for the removal of air-borne low concentration VOCs (volatile organic compounds) emitted from a solvent refinery located in Kaohsiung county of southern Taiwan. The fern chips could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. A pilot-scale biofilter (0.80 mL ¡Ñ 0.75 mW ¡Ñ 1.50 mH) packed with 0.24 m3 fern chips was used for the performance study. The study was conducted in the plant by drawing vented gas streams from two distillation columns and two solvent storage vessels. The gas streams contain aromatics and oxygenated hydrocarbons such as benzene, alcohols, and esters. Results indicated that suitable nutrition rates are 10, 100, and 10 g/m3.d, respectively, of milk powder, Urea-N, and K2HPO4-P, accompanied with a water spraying rate of 125 L/m3.d. Around 85% of VOCs in the influent gas with concentrations of 600-3,200 ppm (as CH4) could be removed under an average loading of 60 g VOC (as methane)/m3.h. A test indicated that odor intensity (expressed as dilution to threshold (D/T) ratio) of the influent gas could be reduced from around 7,330 to 73.
8

Biotreatment of propylene glycol methyl ether acetate (PGMEA) and toluene in air streams

Chang, Yu-feng 02 July 2009 (has links)
Biotreatment for air pollution control can generally be categorized as biofilter, bioscrubbing and biotrickling filter systems. Generally, biotreatments could be effective and more economical treatment for containment waste gas if designed and operated properly. A two stage down-flow biofilter (2.18 m in height and 0.4 m¡Ñ0.4 m in cross-sectional area) was constructed to develop a biofilter packed only with fern chips for the removal of air-borne propylene glycol monomethyl ether acetate (PGMEA). Both stages were packed with fern chips of 0.30 m in height and 0.40 m ¡Ñ0.40 m in cross section. Fern chips could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. In addition, the fern chip medium has the following merits: (1) simplicity in composition, (2) low pressure drop for gas flow (< 20 mmH2O m-1), (3) simple in humidification, nutrient addition, pH control, and metabolite removal, (4) economical (USD$ 174 ¡V 385 m-3), and (5) low weight (wet basis around 290 kg m-3). Results indicate that with operation conditions of media moisture content controlled in the range of 50 ¡V 74%, media pH of 6.5 ¡V 8.3, EBRT (empty bed retention time) of 0.27 ¡V 0.4 min, influent PGMEA concentrations of 100 to 750 mg m-3, volumetric organic loading of < 170 g m-3 h-1, and nutrition rates of Urea-N 66.0 g m-3.day-1, KH2PO4-P 13.3 g m-3.day-1 and milk powder 1.0 g m-3 day-1, the fern-chip packed biofilter could achieve an overall PGMEA removal efficacy of around 94%. Instant milk powder or liquid milk was essential to the good and stable performance of the biofilter for PGMEA removal. An activated sludge aeration basin (20 cm i.d., 140 cm height) equipped with either a coarse air diffuser (a plastic pipe perforated with 56 orifices of 2 mm in diameter) or a fine diffuser (porous plastic type with 100-micrometer pores) was utilized to treat an air-borne hydrophobic VOC (toluene, 700 ¡V 800 mg m-3). The purposes of this study were to test the influences of both MLSS and diffuser type on the VOC removal efficiency. Results show that higher MLSS (mixed liquor suspended solids) such as 10,000 ¡V 40,000 mg L-1 in the mixed liquor did not enhance greatly the transfer and removal of the introduced toluene. Instead, activated sludge basins with a normal MLSS (e.g., 2,000 ¡V 4,000 mg L-1) in the mixed liquor and an efficient gas diffusion system with volumetric VOC transfer coefficient of around 10 ¡V 15 h-1 can be used for the removal of hydrophobic VOCs from the introduced gas. For achieving a removal of over 95% of the introduced toluene or similar hydrophobic VOCs, commercial air diffusers for aerobic biological wastewater treatment basins can be used with a submerged liquid depth of over 0.40 m over the diffusers and an aeration intensity (air flow rate/basin cross-sectional area) of lower than 5.0 m3 m-2 h-1.

Page generated in 0.0455 seconds