• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ENHANCED BIOLOGICAL OXIDATION OF HYDROPHOBIC COMPOUNDS UNDER DYNAMIC LOAD IN A TRICKLE BED AIR BIOFILTER

Zehraoui, Abderrahman January 2013 (has links)
No description available.
2

Biotreatment of propylene glycol methyl ether acetate (PGMEA) and toluene in air streams

Chang, Yu-feng 02 July 2009 (has links)
Biotreatment for air pollution control can generally be categorized as biofilter, bioscrubbing and biotrickling filter systems. Generally, biotreatments could be effective and more economical treatment for containment waste gas if designed and operated properly. A two stage down-flow biofilter (2.18 m in height and 0.4 m¡Ñ0.4 m in cross-sectional area) was constructed to develop a biofilter packed only with fern chips for the removal of air-borne propylene glycol monomethyl ether acetate (PGMEA). Both stages were packed with fern chips of 0.30 m in height and 0.40 m ¡Ñ0.40 m in cross section. Fern chips could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. In addition, the fern chip medium has the following merits: (1) simplicity in composition, (2) low pressure drop for gas flow (< 20 mmH2O m-1), (3) simple in humidification, nutrient addition, pH control, and metabolite removal, (4) economical (USD$ 174 ¡V 385 m-3), and (5) low weight (wet basis around 290 kg m-3). Results indicate that with operation conditions of media moisture content controlled in the range of 50 ¡V 74%, media pH of 6.5 ¡V 8.3, EBRT (empty bed retention time) of 0.27 ¡V 0.4 min, influent PGMEA concentrations of 100 to 750 mg m-3, volumetric organic loading of < 170 g m-3 h-1, and nutrition rates of Urea-N 66.0 g m-3.day-1, KH2PO4-P 13.3 g m-3.day-1 and milk powder 1.0 g m-3 day-1, the fern-chip packed biofilter could achieve an overall PGMEA removal efficacy of around 94%. Instant milk powder or liquid milk was essential to the good and stable performance of the biofilter for PGMEA removal. An activated sludge aeration basin (20 cm i.d., 140 cm height) equipped with either a coarse air diffuser (a plastic pipe perforated with 56 orifices of 2 mm in diameter) or a fine diffuser (porous plastic type with 100-micrometer pores) was utilized to treat an air-borne hydrophobic VOC (toluene, 700 ¡V 800 mg m-3). The purposes of this study were to test the influences of both MLSS and diffuser type on the VOC removal efficiency. Results show that higher MLSS (mixed liquor suspended solids) such as 10,000 ¡V 40,000 mg L-1 in the mixed liquor did not enhance greatly the transfer and removal of the introduced toluene. Instead, activated sludge basins with a normal MLSS (e.g., 2,000 ¡V 4,000 mg L-1) in the mixed liquor and an efficient gas diffusion system with volumetric VOC transfer coefficient of around 10 ¡V 15 h-1 can be used for the removal of hydrophobic VOCs from the introduced gas. For achieving a removal of over 95% of the introduced toluene or similar hydrophobic VOCs, commercial air diffusers for aerobic biological wastewater treatment basins can be used with a submerged liquid depth of over 0.40 m over the diffusers and an aeration intensity (air flow rate/basin cross-sectional area) of lower than 5.0 m3 m-2 h-1.

Page generated in 0.0303 seconds