Return to search

Predicting biodiverse semi-natural grasslands through satellite imagery and machine learning

Semi-natural grasslands are amongst the most biodiverse ecosystems in Europe, though their importance they are experiencing a declining trend. To monitor and assess the health of these ecosystems is generally costly, personnel demanding and time-consuming. With satellite imagery and machine learning becoming more accessible, this can offer a cheap and effective way to gain ecological information about semi-natural grasslands.This thesis explores the possibilities to predict plant species richness in semi-natural grasslands with high resolution satellite imagery through machine learning. Five different machine learning models were employed with various subsets of spectral- and geographical features to see how they performed and why. The study area was in southern Sweden with satellite and survey data from the summer of 2019.Geographical features were the features that influenced the machine learning models most. This can be explained by the geographical spread of the semi-natural grasslands, as well as difficulties in finding correlations in the relatively noisy satellite data. The most important spectral features were found in the red edge- and the short-wave infrared spectrums. These spectrums represent leaf chlorophyll content and water content in vegetation, respectively. The most accurate machine learning model was Random Forest when it was trained using with all the spectral- and geographical features. The other models; Logistic Regression, Support Vector Machine, Voting Classifier and Neural Network, showed general inabilities to interpret feature subsets containing the spectral data.This thesis shows that with deeper knowledge about the satellite-biodiversity relationship and how to apply it with machine learning have the possibilities of cheaper, more efficient and standardized monitoring of ecologically valuable areas such as semi-natural grasslands.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-205609
Date January 2021
CreatorsBaggström, Adrian
PublisherStockholms universitet, Institutionen för naturgeografi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds