Neste trabalho estudaremos a geração do semigrupos por operadores elípticos em dois espaços. Em primeiro lugar estudaremos a geração de semigrupo no espaço \'L POT.2\' (\'OMEGA\') por operadores elípticos de ordem 2m com \'OMEGA\' suficientemente regular. Mais precisamente, se \'OMEGA\' é um domínio limitado com \'PARTIAL OMEGA\' de classe \'C POT. 2m,\' L (x;D) = \'SIGMA\' / [\'alpha\'] \'< ou =\' \'a IND. alpha\' (x) \'D POT. alpha\' é um operador diferencial elíptico de ordem 2m, com \'a IND. alpha\' \'PERTENCE\' \' \'C POT.j\' (\'OMEGA\'), j = max {0, [\'alpha\'] - m}, e A : D(A) \'ESTÁ CONTIDO\' EM \'L POT. 2 (\'OMEGA\') \'SETA\' \' L POT. 2 (\'OMEGA\') é o operador linear dado por D(A) = \'H POT. 2m\' (\'OMEGA\') \'H POT. m INF. 0\' (\'OMEGA\'), (Au)(x) = L (x;D)u; então -A gera um \'C IND. 0\'-semigrupo holomorfo em \'L POT.2\' (\'OMEGA\'). ). Em segundo lugar estudaremos a geração de semigrupo em \'C IND. 0\'(\'OMEGA\") = ) = {u \'PERTENCE A\' C (\'OMEGA\' \'BARRA\") : u[\'PARTIAL omega\' = 0} por operadores elípticos de ordem 2 com \'OMEGA\' satisfazendo uma propriedade geométrica. Mais precisamente, se \'OMEGA\' ESTA CONTIDO EM\' \'R POT. n\' (n \'> ou =\' 2) é um domínio limitado que satisfaz a condição de cone exterior uniforme, L é o operador Lu := - \\\\SIGMA SUP n INF. i,j = 1\' \'a IND. ij \'D IND. ij u + \'\\SIGMA SUP. n IND. j=1 \'b IND. j\' u + cu com coeficientes reais \'a IND. ij\' , \'b IND. j\' , c que satisfazem \'b IND. j \' \'PERTENCE A\' \'L POT. INFTY\' (\'OMEGA\') , j = 1, ..., n, c \'PERTENCE A \' \'L POT> INFTY\' (OMEGA), c \'> ou =\' 0, \'a IND. ij\' \'PERTECE A\' C(\' OMEGA BARRA)\' \' INTERSECCAO\' \'L POT. INFTY\' (OMEGA),e \'A IND. 0\' é parte de L em \'C IND. 0\' (\"OMEGA\'), isto é, D(\'A IND. 0\') = {u \'PERTENCE A\' \'C IND. 0\' (\'OMEGA\') \'INTERSECÇÂO\' \'W POT. 2, n INF. loc\' (\'OMEGA\') : Lu \'PERTENCE A\' \'C IND. 0\' (\'OMEGA\')\' \'A IND. 0\' u = Lu, então -\'A IND. 0\' gera um \'C IND. 0-semigrupo holomorfo limitado em \'C IND. 0\' (\'OMEGA\') / In this work we study the generation of semigroups by elliptic operators in two spaces. Firstly we study the generation of semigroup in the space \'L POT. 2\' (OMEGA) for elliptic operators of order 2m with \'OMEGA\' regular domain. More precisely, if \'OMEGA\' is a bounded domain with \\PARTIAL OMEGA\' \'IT BELONGS\' \'C POT. 2m\', L (x, D) = \\ sigma INF.ALPHA \'> or =\' 2m, \'a IND. alpha\' ( x) \'D POT alpha\' is an elliptic differential operator of order 2m, with \'a IND. alpha\' \' \'IT BELONGS\' \'C POT. j\' (OMEGA), j = max , and A : D (A) \'THIS CONTAINED\' \'L POT. 2\' (OMEGA) \'ARROW\' \'L POT. 2\' (OMEGA) is linear operator given or D(A) = \'H POT. 2m\' (OMEGA) \'INTERSECTION\' \'H POT. m INF. 0 (OMEGA) (Au) (x) = L (x,D) u then -A generates a holomorphic \'C IND. 0\'-semigroup in \'L POT. 2\'.(OMEGA). Secondly we study the generation of semigroup in \'C IND. 0\' (OMEGA) = {u \'IT BELONGS\' (c INF. O\' (OMEGA BAR) : \'u [IND. \\partial omega\' = 0} for elliptic operators of second order with \'OMEGA\' satisfying a geometric property. That is, if \'OMEGA\' \'IT BELONGS\' \'R POT. n\' (n > or = 2) is a bounded domain that satisfies the uniform exterior cone condition, L is the elliptic operator given by Lu : = - \\SIGMA SUP. n INF. i,j = 1\' \'a IND. i, j\' \'D IND. ij \' u + \\SIGMA SUP n INF. j=1\' \'b IND j D IND j\' u + cu with real coefficients \'a IND. ij, \'b IND. j\' , c satisfying \'b ind. j\' \'IT BELONGS\' \' L POT. INFTY\' (omega), j = 1, ..., n, c \'it belongs\' \'L POT. INFTY\' (OMEGA), \'c > or =\' 0, \'\'a IND. ij \'IT BELONGS\' C (OMNEGA BAR) \'INTERSECTION\' (OMEGA), and \'A IND. 0\' is part of L in \'C IND. 0\'(OMEGA), that is, D (\'A IND. 0\') = {u \'IT BELONGS\' \'C IND. 0\' (OMEGA) INTERSECTION \'W POT. 2, n IND. loc (OMEGA)} \'A IND. 0u\' = Lu, then - \'A IND. 0\' generates a bounded holomorphic \'C IND. 0\'-semigroup on \'C IND. 0\' (OMEGA)
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-28042014-095009 |
Date | 18 March 2014 |
Creators | Leva, Pedro David Huillca |
Contributors | Carvalho, Alexandre Nolasco de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0111 seconds