• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generación de semigrupos por operadores elípticos en C0(Omega)

Huillca Leva, Pedro David January 2014 (has links)
En este trabajo presentamos un estudio sobre la generación de semigrupos en C0(Ω) por operadores elípticos en forma no divergente de orden 2 con coeficientes de segundo orden continuos, donde Ω satisface un propiedad geométrica: la condición del cono exterior uniforme. / Tesis
2

Two problems in nonlinear PDEs : existence in supercritical elliptic equations and symmetry for a hypo-elliptic operator

López Ríos, Luis Fernando January 2014 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / En este trabajo se aborda el problema de encontrar soluciones regulares para algunas EDPs elípticas e hipo-elípticas no lineales y estudiar sus propiedades cualitativas. En una primera etapa, se considera la ecuación $$ -\Delta u = \lambda e^u, $$ $\lambda > 0$, en un dominio exterior con condición de Dirichlet nula. Un esquema de reducción finito-dimensional permite encontrar infinitas soluciones regulares cuando $\lambda$ es suficientemente pequeño. En la segunda parte se estudia la existencia de soluciones de la ecuación no local $$ (-\Delta)^s u = u^{p \pm \epsilon}, u > 0, $$ en un dominio acotado y suave, con condición de Dirichlet nula; donde $s > 0$ y $p:=(N+2s)/(N-2s) \pm \epsilon$ es cercano al exponente crítico ($\epsilon > 0$ pequeño). Para hallar soluciones, se utiliza un esquema de reducción finito-dimensional en espacios de funciones adecuados, donde el término principal de la función reducida se expresa a partir de las funciones de Green y de Robin del dominio. La existencia de soluciones dependerá de la existencia de puntos críticos de este término principal y de una condición de no degeneración. Por último, se considera un problema no local en el grupo de Heisenberg $H$. En particular, se buscan propiedades de rigidez para soluciones estables de $$ (-\Delta_H)^s v = f(v) en H, $$ $s \in (0,1)$. Como paso fundamental, se prueba una desigualdad del tipo Poincaré en conexión con un problema elíptico degenerado en $R^4_+$. Esta desigualdad se usará en un procedimiento de extensión para dar un criterio bajo el cual los conjuntos de nivel de las soluciones del problema anterior son superficies mínimas en $H$, es decir, tienen $H$-curvatura media nula.
3

Geração de semigrupos por operadores elípticos em L POT. 2 (OMEGA) e C INF. 0 (OMEGA) / Generations of semigroups for elliptic operators in \'L POT. 2\' (\'OMEGA\') and \'C IND. 0(\'OMEGA\')

Leva, Pedro David Huillca 18 March 2014 (has links)
Neste trabalho estudaremos a geração do semigrupos por operadores elípticos em dois espaços. Em primeiro lugar estudaremos a geração de semigrupo no espaço \'L POT.2\' (\'OMEGA\') por operadores elípticos de ordem 2m com \'OMEGA\' suficientemente regular. Mais precisamente, se \'OMEGA\' é um domínio limitado com \'PARTIAL OMEGA\' de classe \'C POT. 2m,\' L (x;D) = \'SIGMA\' / [\'alpha\'] \'< ou =\' \'a IND. alpha\' (x) \'D POT. alpha\' é um operador diferencial elíptico de ordem 2m, com \'a IND. alpha\' \'PERTENCE\' \' \'C POT.j\' (\'OMEGA\'), j = max {0, [\'alpha\'] - m}, e A : D(A) \'ESTÁ CONTIDO\' EM \'L POT. 2 (\'OMEGA\') \'SETA\' \' L POT. 2 (\'OMEGA\') é o operador linear dado por D(A) = \'H POT. 2m\' (\'OMEGA\') \'H POT. m INF. 0\' (\'OMEGA\'), (Au)(x) = L (x;D)u; então -A gera um \'C IND. 0\'-semigrupo holomorfo em \'L POT.2\' (\'OMEGA\'). ). Em segundo lugar estudaremos a geração de semigrupo em \'C IND. 0\'(\'OMEGA\") = ) = {u \'PERTENCE A\' C (\'OMEGA\' \'BARRA\") : u[\'PARTIAL omega\' = 0} por operadores elípticos de ordem 2 com \'OMEGA\' satisfazendo uma propriedade geométrica. Mais precisamente, se \'OMEGA\' ESTA CONTIDO EM\' \'R POT. n\' (n \'> ou =\' 2) é um domínio limitado que satisfaz a condição de cone exterior uniforme, L é o operador Lu := - \\\\SIGMA SUP n INF. i,j = 1\' \'a IND. ij \'D IND. ij u + \'\\SIGMA SUP. n IND. j=1 \'b IND. j\' u + cu com coeficientes reais \'a IND. ij\' , \'b IND. j\' , c que satisfazem \'b IND. j \' \'PERTENCE A\' \'L POT. INFTY\' (\'OMEGA\') , j = 1, ..., n, c \'PERTENCE A \' \'L POT> INFTY\' (OMEGA), c \'> ou =\' 0, \'a IND. ij\' \'PERTECE A\' C(\' OMEGA BARRA)\' \' INTERSECCAO\' \'L POT. INFTY\' (OMEGA),e \'A IND. 0\' é parte de L em \'C IND. 0\' (\"OMEGA\'), isto é, D(\'A IND. 0\') = {u \'PERTENCE A\' \'C IND. 0\' (\'OMEGA\') \'INTERSECÇÂO\' \'W POT. 2, n INF. loc\' (\'OMEGA\') : Lu \'PERTENCE A\' \'C IND. 0\' (\'OMEGA\')\' \'A IND. 0\' u = Lu, então -\'A IND. 0\' gera um \'C IND. 0-semigrupo holomorfo limitado em \'C IND. 0\' (\'OMEGA\') / In this work we study the generation of semigroups by elliptic operators in two spaces. Firstly we study the generation of semigroup in the space \'L POT. 2\' (OMEGA) for elliptic operators of order 2m with \'OMEGA\' regular domain. More precisely, if \'OMEGA\' is a bounded domain with \\PARTIAL OMEGA\' \'IT BELONGS\' \'C POT. 2m\', L (x, D) = \\ sigma INF.ALPHA \'> or =\' 2m, \'a IND. alpha\' ( x) \'D POT alpha\' is an elliptic differential operator of order 2m, with \'a IND. alpha\' \' \'IT BELONGS\' \'C POT. j\' (OMEGA), j = max , and A : D (A) \'THIS CONTAINED\' \'L POT. 2\' (OMEGA) \'ARROW\' \'L POT. 2\' (OMEGA) is linear operator given or D(A) = \'H POT. 2m\' (OMEGA) \'INTERSECTION\' \'H POT. m INF. 0 (OMEGA) (Au) (x) = L (x,D) u then -A generates a holomorphic \'C IND. 0\'-semigroup in \'L POT. 2\'.(OMEGA). Secondly we study the generation of semigroup in \'C IND. 0\' (OMEGA) = {u \'IT BELONGS\' (c INF. O\' (OMEGA BAR) : \'u [IND. \\partial omega\' = 0} for elliptic operators of second order with \'OMEGA\' satisfying a geometric property. That is, if \'OMEGA\' \'IT BELONGS\' \'R POT. n\' (n > or = 2) is a bounded domain that satisfies the uniform exterior cone condition, L is the elliptic operator given by Lu : = - \\SIGMA SUP. n INF. i,j = 1\' \'a IND. i, j\' \'D IND. ij \' u + \\SIGMA SUP n INF. j=1\' \'b IND j D IND j\' u + cu with real coefficients \'a IND. ij, \'b IND. j\' , c satisfying \'b ind. j\' \'IT BELONGS\' \' L POT. INFTY\' (omega), j = 1, ..., n, c \'it belongs\' \'L POT. INFTY\' (OMEGA), \'c > or =\' 0, \'\'a IND. ij \'IT BELONGS\' C (OMNEGA BAR) \'INTERSECTION\' (OMEGA), and \'A IND. 0\' is part of L in \'C IND. 0\'(OMEGA), that is, D (\'A IND. 0\') = {u \'IT BELONGS\' \'C IND. 0\' (OMEGA) INTERSECTION \'W POT. 2, n IND. loc (OMEGA)} \'A IND. 0u\' = Lu, then - \'A IND. 0\' generates a bounded holomorphic \'C IND. 0\'-semigroup on \'C IND. 0\' (OMEGA)
4

Geração de semigrupos por operadores elípticos em L POT. 2 (OMEGA) e C INF. 0 (OMEGA) / Generations of semigroups for elliptic operators in \'L POT. 2\' (\'OMEGA\') and \'C IND. 0(\'OMEGA\')

Pedro David Huillca Leva 18 March 2014 (has links)
Neste trabalho estudaremos a geração do semigrupos por operadores elípticos em dois espaços. Em primeiro lugar estudaremos a geração de semigrupo no espaço \'L POT.2\' (\'OMEGA\') por operadores elípticos de ordem 2m com \'OMEGA\' suficientemente regular. Mais precisamente, se \'OMEGA\' é um domínio limitado com \'PARTIAL OMEGA\' de classe \'C POT. 2m,\' L (x;D) = \'SIGMA\' / [\'alpha\'] \'< ou =\' \'a IND. alpha\' (x) \'D POT. alpha\' é um operador diferencial elíptico de ordem 2m, com \'a IND. alpha\' \'PERTENCE\' \' \'C POT.j\' (\'OMEGA\'), j = max {0, [\'alpha\'] - m}, e A : D(A) \'ESTÁ CONTIDO\' EM \'L POT. 2 (\'OMEGA\') \'SETA\' \' L POT. 2 (\'OMEGA\') é o operador linear dado por D(A) = \'H POT. 2m\' (\'OMEGA\') \'H POT. m INF. 0\' (\'OMEGA\'), (Au)(x) = L (x;D)u; então -A gera um \'C IND. 0\'-semigrupo holomorfo em \'L POT.2\' (\'OMEGA\'). ). Em segundo lugar estudaremos a geração de semigrupo em \'C IND. 0\'(\'OMEGA\") = ) = {u \'PERTENCE A\' C (\'OMEGA\' \'BARRA\") : u[\'PARTIAL omega\' = 0} por operadores elípticos de ordem 2 com \'OMEGA\' satisfazendo uma propriedade geométrica. Mais precisamente, se \'OMEGA\' ESTA CONTIDO EM\' \'R POT. n\' (n \'> ou =\' 2) é um domínio limitado que satisfaz a condição de cone exterior uniforme, L é o operador Lu := - \\\\SIGMA SUP n INF. i,j = 1\' \'a IND. ij \'D IND. ij u + \'\\SIGMA SUP. n IND. j=1 \'b IND. j\' u + cu com coeficientes reais \'a IND. ij\' , \'b IND. j\' , c que satisfazem \'b IND. j \' \'PERTENCE A\' \'L POT. INFTY\' (\'OMEGA\') , j = 1, ..., n, c \'PERTENCE A \' \'L POT> INFTY\' (OMEGA), c \'> ou =\' 0, \'a IND. ij\' \'PERTECE A\' C(\' OMEGA BARRA)\' \' INTERSECCAO\' \'L POT. INFTY\' (OMEGA),e \'A IND. 0\' é parte de L em \'C IND. 0\' (\"OMEGA\'), isto é, D(\'A IND. 0\') = {u \'PERTENCE A\' \'C IND. 0\' (\'OMEGA\') \'INTERSECÇÂO\' \'W POT. 2, n INF. loc\' (\'OMEGA\') : Lu \'PERTENCE A\' \'C IND. 0\' (\'OMEGA\')\' \'A IND. 0\' u = Lu, então -\'A IND. 0\' gera um \'C IND. 0-semigrupo holomorfo limitado em \'C IND. 0\' (\'OMEGA\') / In this work we study the generation of semigroups by elliptic operators in two spaces. Firstly we study the generation of semigroup in the space \'L POT. 2\' (OMEGA) for elliptic operators of order 2m with \'OMEGA\' regular domain. More precisely, if \'OMEGA\' is a bounded domain with \\PARTIAL OMEGA\' \'IT BELONGS\' \'C POT. 2m\', L (x, D) = \\ sigma INF.ALPHA \'> or =\' 2m, \'a IND. alpha\' ( x) \'D POT alpha\' is an elliptic differential operator of order 2m, with \'a IND. alpha\' \' \'IT BELONGS\' \'C POT. j\' (OMEGA), j = max , and A : D (A) \'THIS CONTAINED\' \'L POT. 2\' (OMEGA) \'ARROW\' \'L POT. 2\' (OMEGA) is linear operator given or D(A) = \'H POT. 2m\' (OMEGA) \'INTERSECTION\' \'H POT. m INF. 0 (OMEGA) (Au) (x) = L (x,D) u then -A generates a holomorphic \'C IND. 0\'-semigroup in \'L POT. 2\'.(OMEGA). Secondly we study the generation of semigroup in \'C IND. 0\' (OMEGA) = {u \'IT BELONGS\' (c INF. O\' (OMEGA BAR) : \'u [IND. \\partial omega\' = 0} for elliptic operators of second order with \'OMEGA\' satisfying a geometric property. That is, if \'OMEGA\' \'IT BELONGS\' \'R POT. n\' (n > or = 2) is a bounded domain that satisfies the uniform exterior cone condition, L is the elliptic operator given by Lu : = - \\SIGMA SUP. n INF. i,j = 1\' \'a IND. i, j\' \'D IND. ij \' u + \\SIGMA SUP n INF. j=1\' \'b IND j D IND j\' u + cu with real coefficients \'a IND. ij, \'b IND. j\' , c satisfying \'b ind. j\' \'IT BELONGS\' \' L POT. INFTY\' (omega), j = 1, ..., n, c \'it belongs\' \'L POT. INFTY\' (OMEGA), \'c > or =\' 0, \'\'a IND. ij \'IT BELONGS\' C (OMNEGA BAR) \'INTERSECTION\' (OMEGA), and \'A IND. 0\' is part of L in \'C IND. 0\'(OMEGA), that is, D (\'A IND. 0\') = {u \'IT BELONGS\' \'C IND. 0\' (OMEGA) INTERSECTION \'W POT. 2, n IND. loc (OMEGA)} \'A IND. 0u\' = Lu, then - \'A IND. 0\' generates a bounded holomorphic \'C IND. 0\'-semigroup on \'C IND. 0\' (OMEGA)
5

Solución débil a una ecuación elíptica con el (P,Q)-laplaciano y término no lineal dependiente del gradiente

Acuña Guillermo, José Luis January 2019 (has links)
Estudia un problema elíptico no lineal con el (p,q)-Laplaciano y que tiene un término convectivo (el término dependiente del gradiente). Se probó que bajo condiciones adecuadas para el término convectivo, el problema posee una solución débil. Además se obtiene un resultado de unicidad y se presentó un algoritmo de aproximación numérica. / Tesis

Page generated in 0.1348 seconds