Return to search

Testing of the Thermo-Hydro-Mechanical-Chemical (THMC) Behavior of Lime-Treated Subgrade Marine Clays Subjected to Environmental Stresses

Construction of pavements requires the subgrades - which are the foundation of the structure, to be capable of supporting traffic loads that would be applied onto them. In the case that the subgrades are unable to support the structure, failure would occur. The subgrade being in-situ soil can be of poor quality if not properly constructed or improved if necessary. In Canada, the eastern region precisely Ontario and Quebec, is dominated by sensitive marine clays which when disturbed lose their strength drastically making them a geotechnical hazard. The soil's high sensitivity causes this behavior it poses. Therefore, to construct pavements in this type of soil, improvement techniques are required. One such is lime stabilization which improves the engineering properties of the soil.
Research on the stabilization of sensitive marine clay in Canada has been conducted to a certain extent showing the effectiveness of the process in improving the soil's poor engineering properties. However, during the process of stabilization, the thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes and interactions that occur influence the behavior of the stabilized clay. Environmental stresses such as moisture and temperature are also known to affect the coupled processes that occur. However, these coupled processes and their impact on the stabilized clay are not well known and understood. The goal of the research was to therefore, conduct various column experiments and monitoring to determine the evolution of the coupled THMC processes under normal curing and when daily thermal cycles were applied to the treated and untreated clay.
Various columns were prepared in the laboratory to accommodate the compacted treated and untreated sensitive marine clay for monitoring over 28 days. In addition, columns from which samples for extensive geotechnical testing were collected, were prepared. The soils' strength and hydraulic conductivity were determined through testing while the suction, electrical conductivity and temperature evolution were determined by use of sensors placed within the columns.
The developed mechanical properties of the soil were significantly improved by use of lime. This development of mechanical properties was further enhanced when the daily thermal cycles were applied to the soil due to increased curing temperature stimulated. In addition, to temperature and chemical reactions, it was observed that the hydraulic properties also contributed to the developed soil strength. The strongly coupled THMC processes were thus, observed during the treatment of the clay with lime.
The results obtained will therefore, contribute to a better understanding of the coupled THMC processes that occur when sensitive marine clay is treated with lime. It will further contribute to cost effectively designing pavements in regions with sensitive marine clays or similar.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/44417
Date21 December 2022
CreatorsTunono, Chanda
ContributorsFall, Mamadou
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0032 seconds