Autonomous driving systems are rapidly improving and may have the ability to change society in the coming decade. One important part of these systems is the interpretation of sensor information into trajectories of objects. In this master’s thesis, we study an energy minimisation method with radar and camera measurements as inputs. An energy is associated with the trajectories; this takes the measurements, the objects’ dynamics and more factors into consideration. The trajectories are chosen to minimise this energy, using a gradient descent method. The lower the energy, the better the trajectories are expected to match the real world. The processing is performed offline, as opposed to in real time. Offline tracking can be used in the evaluation of the sensors’ and the real time tracker’s performance. Offline processing allows for the use of more computer power. It also gives the possibility to use data that was collected after the considered point in time. A study of the parameters of the used energy minimisation method is presented, along with variations of the initial method. The results of the method is an improvement over the individual inputs, as well as over the real time processing used in the cars currently. In the parameter study it is shown which components of the energy function are improving the results. / Mycket resurser läggs på utveckling av självkörande bilsystem. Dessa kan komma att förändra samhället under det kommande decenniet. En viktig del av dessa system är behandling och tolkning av sensordata och skapande av banor för objekt i omgivningen. I detta examensarbete studeras en energiminimeringsmetod tillsammans med radar- och kameramätningar. En energi beräknas för banorna. Denna tar mätningarna, objektets dynamik och fler faktorer i beaktande. Banorna väljs för att minimera denna energi med hjälp av gradientmetoden. Ju lägre energi, desto bättre förväntas banorna att matcha verkligheten. Bearbetning sker offline i motsats till i realtid; offline-bearbetning kan användas då prestandan för sensorer och realtidsbehandlingen utvärderas. Detta möjliggör användning av mer datorkraft och ger möjlighet att använda data som samlats in efter den aktuella tidpunkten. En studie av de ingående parametrarna i den använda energiminimeringsmetoden presenteras, tillsammans med justeringar av den ursprungliga metoden. Metoden ger ett förbättrat resultat jämfört med de enskilda sensormätningarna, och även jämfört med den realtidsmetod som används i bilarna för närvarande. I parameterstudien visas vilka komponenter i energifunktionen som förbättrar metodens prestanda.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-208344 |
Date | January 2017 |
Creators | Andersson, Anton |
Publisher | KTH, Skolan för datavetenskap och kommunikation (CSC) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds