Return to search

Spatial coordination in wireless sensor network applications

In distributed systems, dependency among different computations of an application leads to a problem of deciding the locations of computations. Spatial requirements of a computation can be expressed in terms of spatial relationships with other computations. This research presents programming abstractions and language constructs which can be used for specifying spatial coordination requirements for distributed computations. A spatial coordination middleware has been implemented for satisfying spatial coordination requirements of systems implemented using the Actor model of concurrent computation. Our approach abstracts spatial requirements of concurrent computations and provides key programming primitives for specifying these requirements. We have also implemented a number of higher level spatial coordination primitives which can be translated into the basic primitives. Spatial requirements can be specified using these primitives and then the runtime system converts them into a constraint satisfaction problem and satisfies them. Our approach reduces the programming complexity and provides a middleware which separates spatial requirements from functional code and enables the application programmer to change spatial requirements at runtime without effecting application's functionality. We have identified some of the high level primitives and provided a mechanism to develop high level primitives on top of the basic primitives.
This thesis presents the rationale, design, implementation, and evaluation of spatial coordination. By comparing programs written with and without our spatial coordination primitives, we show how spatial coordination enables a programmer to specify spatial requirements declaratively and simplify the programming task. Experimental results demonstrate the performance of the approach, as the number of constraints increases.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-03232011-143504
Date31 March 2011
CreatorsKeela, Anil Kumar
ContributorsJamali, Nadeem, Ludwig, Simone, Horsch, Michael, Gokaraju, Ramakrishna
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-03232011-143504/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0015 seconds