Transducers are finite state automata with an output. In this thesis, we attempt to classify sequences that can be constructed by iteratively applying a transducer to a given word. We begin exploring this problem by considering sequences of words that can be produced by iterative application of a transducer to a given input word, i.e., identifying sequences of words of the form w, t(w), t²(w), . . . We call such sequences transducer recognizable. Also we introduce the notion of "recognition of a sequence in context", which captures the possibility of concatenating prefix and suffix words to each word in the sequence, so a given sequence of words becomes transducer recognizable. It turns out that all finite and periodic sequences of words of equal length are transducer recognizable. We also show how to construct a deterministic transducer with the least number of states recognizing a given sequence. To each transducer t we associate a two-dimensional language L²(t) consisting of blocks of symbols in the following way. The first row, w, of each block is in the input language of t, the second row is a word that t outputs on input w. Inductively, every subsequent row is a word outputted by the transducer when its preceding row is read as an input. We show a relationship of the entropy values of these two-dimensional languages to the entropy values of the one-dimensional languages that appear as input languages for finite state transducers.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-1216 |
Date | 14 December 2007 |
Creators | Dolzhenko, Egor |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.0018 seconds