Return to search

Low-Frequency Series Loaded Resonant Inverter Characterization

Modern power systems require multiple conversions between DC and AC to deliver power from renewable energy sources. Recent growth in DC loads result in increased system costs and reduced efficiency, due to redundant conversions. Advances in DC microgrid systems demonstrate superior performance by reducing conversion stages. The literature reveals practical DC microgrid systems composed of wind and solar power to replace existing fossil fuel technologies for residential consumers. Although higher efficiencies are achieved, some household appliances require AC power; thus, the need for highly efficient DC to AC converters is imperative in establishing DC microgrid systems. Resonant inverter topologies exhibit zero current switching (ZCS); hence, eliminate switching losses leading to higher efficiencies in comparison to hard switched topologies.
Resonant inverters suffer severe limitations mainly attributed to a load dependent resonant frequency. Recent advancements in power electronics propose an electronically tunable inductor suited for low frequency applications [24], [25]; as a consequence, frequency stability in resonant inverters is achievable within a limited load range. This thesis characterizes the operational characteristics of a low-frequency series loaded resonant inverter using a manually tunable inductor to achieve frequency stability and determine feasibility of utilization. Simulation and hardware results demonstrate elimination of switching losses via ZCS; however, significant losses are observed in the resonant inductor which compromises overall system efficiency. Additionally, harmonic distortion severely impacts output power quality and limits practical applications.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2739
Date01 June 2016
CreatorsMedina, Alfredo
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0015 seconds