Return to search

CAN-bus system for vehicle actuation and data logging with Arrowhead Framework

The use of micro controllers in automotive application have exploded during the last half century. What was initially a set of mechanical systems that formed a vehicle have now become a collection of computers on wheels. The reason is quite obvious: micro controllers use several inputs to optimize the performance of systems; for example an engine control or an active safety system.The different inputs and outputs to these electronic units (electronic control unit, ECU) are of interest to other such units thereby justifying the need of inter-ECU communications. The Controller Area Network (CAN) bus has been developed to facilitate this communication. It is a message based protocol and is very resilient. It is however relatively slow and limited in terms of security. Security is assured only by trying to keep the message identification tags confidential and the bus physically separated to other network. A couple of decades ago our society embraced the Information Technology (IT) revolution. It allowed people to have extensive access to information. From a technology point of view, IT is based on the use of the Internet, which has been initially designed by the US military for robust applications. It is fast and its security is sufficiently high that we use it to communicate with our banks where we keep all our life savings.The aim of this thesis has been to combine these technologies such that a vehicle with a CAN bus could offer services (just like a bank does) over the Internet. The goal then is to transform a CAN bus to become a service provider over the Internet. The services are the broadcasted CAN messages made available to authorized interested parties and can post information and actuations to the ECUs connected to the CAN bus. A vehicle in that case becomes a cyber physical system. To make this transformation possible, we use the open source Arrowhead Framework, which is based on a Service Oriented Architecture (SOA). The available services are made known via a Service Registry and Orchestration service prosumers. Concretely, the work in this thesis project has been to develop (i.e., to design and implement) a CAN service prosumer that is Arrowhead Framework compliant. It has been successfully tested with another service prosumer, which is an Arrowhead Framework compliant data logger. The driving motivation for the thesis project are construction equipment machines, such as wheel loaders and excavators, which are vehicles with booms or arms. The aspiration is that they not only drive autonomously but also dig autonomously. This ambition shall require large amount of data to be exchanged, something that a CAN bus cannot handle.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-74967
Date January 2019
CreatorsMånsson, Andreas
PublisherLuleå tekniska universitet, Institutionen för system- och rymdteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds