L'objet de cette thèse est l'étude du comportement asymptotique d'estimateurs à noyau d'une densité de probabilité et de ses dérivées, d'une fonction de régression, ainsi que du mode et de la valeur modale d'une densité de probabilité. Le but est d'établir certaines propriétés des estimateurs à noyau récursifs ou semi-récursifs afin de comparer leur comportement asymptotique à celui des estimateurs classiques. Dans le premier chapitre, nous établissons des principes de grandes déviations (PGD) et des principes de déviations modérées (PDM) pour l'estimateur récursif d'une densité de probabilité et pour ses dérivées. Il s'avére que, dans les principes de déviations vérifiés par les estimateurs des dérivées, la fonction de taux est toujours une fonction quadratique, que les déviations soient grandes ou modérées. Contrairement, pour l'estimateur de la densité, les fonctions de taux qui apparaissent sont de nature différente selon que les déviations sont grandes ou modéerées. Les fonctions de taux qui apparaissent tant dans les PGD pour les dérivées que dans les PDM pour la densité et pour les dérivées sont plus grandes dans le cas où l'estimateur récursif est utilisé. Dans le deuxième chapitre, nous établissons des PGD et des PDM pour des estimateurs à noyau d'une fonction de régression. Nous généralisons les résultats déjà obtenus dans le cas unidimensionnel pour l'estimateur de Nadaraya-Watson. Nous étudions ensuite le comportement en déviations de la version semi-récursive de cet estimateur en établissant des PGD et des PDM. Les fonctions de taux qui apparaissent dans les PDM sont plus grandes pour l'estimateur semi-récursif que pour l'estimateur classique. Dans le troisième chapitre, nous nous intéressons à l'estimation jointe du mode et de la valeur modale d'une densité de probabilité basée sur l'estimateur à noyau récursif de la densité. Nous étudions la vitesse de convergence en loi et presque sûre du couple formé par ces deux estimateurs. Pour estimer simultanément les deux paramètres de façon optimale, il faut utiliser des fenêtres différentes pour définir chacun des deux estimateurs. Les estimateurs semi-récursifs conduisent à des variances asymptotiques plus petites que les estimateurs classiques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00131199 |
Date | 05 December 2006 |
Creators | Thiam, Baba |
Publisher | Université de Versailles-Saint Quentin en Yvelines |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0213 seconds