The g-proteobacterium Shewanella oneidensis MR-1 reduces a wide range of terminal electron acceptors, including solid Fe(III) oxides. Pathways for Fe(III) oxide reduction by S. oneidensis include non-reductive (organic ligand-promoted) solubilization reactions, and either direct enzymatic, or indirect electron shuttling pathways. Results of the present study expand the spectrum of electron acceptors reduced by S. oneidensis to include the naturally occurring disulfide compounds cystine, oxidized glutathione, dithiodiglycolate, dithoidiproponiate and cystamine. Subsequent electron shuttling experiments demonstrated that S. oneidensis employs the reduced (thiol) form of the disulfide compounds (cysteine, reduced glutathione, mercaptoacetate, mercaptopropionate, and 2-nitro-5-thiobenzoate, cystamine) as electron shuttles to transfer electrons to extracellular Fe(III) oxides. The results of the present study indicate that microbial disulfide reduction may represent an important electron-shuttling pathway for electron transfer to Fe(III) oxides in anaerobic marine and freshwater environments.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53406 |
Date | 08 June 2015 |
Creators | Wee, Seng Kew |
Contributors | DiChristina, Thomas |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0021 seconds