• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel pathway for microbial FE(III) reduction: electron shuttling through naturally occurring thiols

Wee, Seng Kew 08 June 2015 (has links)
The g-proteobacterium Shewanella oneidensis MR-1 reduces a wide range of terminal electron acceptors, including solid Fe(III) oxides. Pathways for Fe(III) oxide reduction by S. oneidensis include non-reductive (organic ligand-promoted) solubilization reactions, and either direct enzymatic, or indirect electron shuttling pathways. Results of the present study expand the spectrum of electron acceptors reduced by S. oneidensis to include the naturally occurring disulfide compounds cystine, oxidized glutathione, dithiodiglycolate, dithoidiproponiate and cystamine. Subsequent electron shuttling experiments demonstrated that S. oneidensis employs the reduced (thiol) form of the disulfide compounds (cysteine, reduced glutathione, mercaptoacetate, mercaptopropionate, and 2-nitro-5-thiobenzoate, cystamine) as electron shuttles to transfer electrons to extracellular Fe(III) oxides. The results of the present study indicate that microbial disulfide reduction may represent an important electron-shuttling pathway for electron transfer to Fe(III) oxides in anaerobic marine and freshwater environments.
2

The impact of ionizing radiation on microbial cells pertinent to the storage, disposal and remediation of radioactive waste

Brown, Ashley Richards January 2014 (has links)
Microorganisms control many processes pertinent to the stability of radwaste inventories in nuclear storage and disposal facilities. Furthermore, numerous subsurface bacteria, such as Shewanella spp. have the ability to couple the oxidation of organic matter to the reduction of a range of metals, anions and radionuclides, thus providing the potential for the use of such versatile species in the bioremediation of radionuclide contaminated land. However, the organisms promoting these processes will likely be subject to significant radiation doses. Hence, the impact of acute doses of ionizing radiation on the physiological status of a key Fe(III)-reducing organism, Shewanella oneidensis, was assessed. FT-IR spectroscopy and MALDI-TOF-MS suggested that the metabolic response to radiation is underpinned by alterations to proteins and lipids. Multivariate statistical analysis indicated that the phenotypic response was somewhat predictable although dependent upon radiation dose and stage of recovery. In addition to the cellular environment, the impact of radiation on the extracellular environment was also assessed. Gamma radiation activated ferrihydrite and the usually recalcitrant hematite for reduction by S. oneidensis. TEM, SAED and Mössbauer spectroscopy revealed that this was a result of radiation induced changes to crystallinity. Despite these observations, environments exposed to radiation fluxes will be much more complex, with a range of electron acceptors, electron donors and a diverse microbial community. In addition, environmental dose rates will be much lower than those used in previous experiments. Sediment microcosms irradiated over a two month period at chronic dose rates exhibited enhanced Fe(III)-reduction despite receiving potentially lethal doses. The microbial ecology was probed throughout irradiations using pyrosequencing to reveal significant shifts in the microbial communities, dependent on dose and availability of organic electron donors. The radiation tolerance of an algal contaminant of a spent nuclear fuel pond was also assessed. FT-IR spectroscopy revealed a resistant phenotype of Haematococcus pluvialis, whose metabolism may be protected by the radiation induced production of an astaxanthin carotenoid. The experiments of this thesis provide evidence for a range of impacts of ionizing radiation on microorganisms, including the potential for radiation to provide the basis for novel ecosystems. These results have important implications to the long-term storage of nuclear waste and the geomicrobiology of nuclear environments.

Page generated in 0.1023 seconds